بررسی اثر شتاب گریز از مرکز بر روی سرعت انتشار جبهه شعله در احتراق پیش-آمیخته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مکانیک و هوافضا- دانشگاه صنعتی مالک اشتر اصفهان- ایران

2 دانشکده مکانیک و هوافضا- دانشگاه صنعتی مالک اشتر- اصفهان

3 دانشکده مکانیک و هوافضا- دانشگاه صنعتی مالک اشتر- اصفهان-

چکیده

افزایش سرعت انتشار شعله به کمک نیروی گریز از مرکز که توسط لوئیس مطرح شده ­است، چالش جدیدی است که می ­تواند منجر به کاهش طول محفظه احتراق و در نتیجه افزایش نسبت نیروی جلوبرنده به وزن شود. در این تحقیق، اثر نیروی گریز از مرکز بر روی سرعت انتشار شعله در احتراق پیش­ آمیخته به کمک شبیه­ سازی گردابه­ های بزرگ (LES) احتراق پیش­ آمیخته مخلوط هوا - پروپان در یک لوله دوبعدی با دو انتهای بسته و در بستر نرم­ افزار متن­باز اوپنفوم بررسی شد. مقایسه نتایج حاصل از حل عددی با نتایج آزمایشگاهی، حدود 8 درصد خطا را در بحرانی ­ترین شتاب گریز از مرکز (3000 متر بر مجذور ثانیه) نشان داد. به‌منظور بررسی تأثیر مدل اغتشاشی، شبیه سازی احتراق به کمک مدل اغتشاشی k-e نیز برای شتاب گریز از مرکز 3000 متر بر مجذور ثانیه با مدل LES مقایسه ­شد و ملاحظه ­شد که شبیه­سازی گردابه­ های بزرگ، سرعت انتشار و چین­ خوردگی سطح شعله را با دقت بالاتری مدل‌سازی می­ کند. بررسی پارامتر چین‌خوردگی سطح شعله، نشان­ داد که در شتاب گریز از مرکز 4000 متر بر مجذور ثانیه‌، چین­ خوردگی سطح شعله به‌طور ناگهانی افزایش و سپس به سرعت کاهش می­ یابد که به نوعی خاموشی شعله را در شتاب گریز از مرکز مورد نظر نشان می­ دهد. سپس اثر طول لوله بر روی سرعت انتشار شعله و چین­ خوردگی سطح شعله در شتاب 2000 متر بر مجذور ثانیه بررسی شد و ملاحظه شد با افزایش طول لوله و افزایش فاصله از مبدأ دوران، نیروی گریز از مرکز القایی افزایش و در نتیجه سرعت انتشار و چین­خوردگی افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Effect of Centrifugal Acceleration on the Flame Propagation Speed in Premixed Combustion

نویسندگان [English]

  • AliReza Mostofizadeh 1
  • Ghasem Moshir 2
  • Mehrdad Bazazzadeh 3
1 Department of Mechanic and Aerospace, Malek Ashtar University of Technology, Isfahan, Iran
2 Department of Mechanic and Aerospace, Malek Ashtar University of Technology, Isfahan
3 Department of Mechanic and Aerospace, Malek Ashtar University of Technology, Isfahan
چکیده [English]

Increasing the flame propagation speed with aid of centrifugal force proposed by Lewis is a new challenge that can reduce the length of the combustion chamber and thus increase the thrust to weight ratio. In this study, large eddy simulation of premixed combustion of air-propane mixture in a two-dimensional tube with closed ends have been implemented in OpenFoam Software to investigate the effect of centrifugal force on the flame propagation speed. Comparison of numerical solution results with experimental data showed about 8% error in the most critical centrifugal acceleration (3000g). To investigate the effect of the turbulence model, the combustion simulation using the k turbulence model for 3000g, was compared with the LES model and it was observed that the LES model, investigate propagation speed and flame wrinkling with higher accuracy. Considering the flame surface wrinkling parameter, it was observed that at a centrifugal acceleration equal to 4000g, the flame surface wrinkling, suddenly increased and then decreased rapidly that indicates the extinction of the flame. Then, the effect of pipe length on flame propagation speed and flame wrinkling at 2000g was investigated and it was observed that increasing pipe length and distance from the origin of rotation, the induced centrifugal force increased and as a result, propagation speed and wrinkling Increases.
 

کلیدواژه‌ها [English]

  • Thrust
  • Combustion
  • premixed
  • OpenFOAM
  • wrinkling
  1. P. Boyce, “Gas Turbine Engineering Handbook”, Forth Edition, Butterworth-Heinemann, 2011.
  2. D. Mattingly, W. H. Heiser and D. H. Daley, “Aircraft Engine Design”, Second Edition, AIAA, 1987.
  3. T. Bohan and M. D. Polanka, “Analysis of Flow Migration in an Ultra-Compact Combustor,” Journal of Engineering for Gas Turbines and Power, 135, 2013, pp. 1-11.
  4. Y. Hsu, L. P. Goss and W. M. Roquemore, “Characteristics of a Trapped-Vortex Combustor,” Journal of Propulsion and Power, 14, 1998, pp. 57–65.
  5. Zelina, J. Ehret, R. D. Hancock and D. T. Shouse, “Ultra-Compact Combustion Technology Using High Swirl for Enhanced Burning Rate,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, USA, July 2002.
  6. Zelina, D. T. Shouse and C. Neuroth, “High-Pressure Tests of a High-g Ultra-Compact Combustor,”. 41St AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, USA, July 2005.
  7. D. Lewis, “Combustion in a Centrifugal-Force Field,” International Symposium on Combustion, 13, 1971, pp. 625-629.
  8. D. Lewis, “Centrifugal-Force Effects on Combustion,” International Symposium on Combustion, 14, 1973, pp. 413-419.
  9. D. Lewis, J. H. Shadowen and E. B. Thayer, “Swirling Flow Combustion,” Journal of Energy, 1, 1977, pp. 201-205.
  10. Zelina, G. J. Sturgess and D. T. Shouse, “The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates,” 40St AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Fort Lauderdale, Florida, USA, July 2004.
  11. M. Briones, B. Sekar and T. Erdmann, “Effect of Centrifugal Force on Turbulent Premixed Flames,” Journal of Engineering for Gas Turbines and Power, 137, 2015, pp. 1-10.
  12. P. Lapsa and W. J. A. Dahm. “Hyperacceleration effects on turbulent combustion in premixed step-stabilized flames,” Proceedings of the Combustion Institute, 32, 2009, pp.1731-1738.
  13. A. Sirignano, J. P. Delplanque and F. Liu, “Selected Challenges in Jet and Rocket Engine Combustion Research,” In 33th Joint Propulsion Conference and Exhibit, 1997.
  14. A. Anthenien, R. Mantz, W. M. Roquemore and G. Sturgess, “Experimental Results for a Novel, High Swirl, Ultra Compact Combustor for Gas Turbine Engines,” In 2nd Joint Meeting of the U.S. Sections of the Combustion Institute, 2001.
  15. J. Quaale, R. A. Anthenien, J. Zelina and J. Ehret, “Flow Measurements Within a High Swirl Ultra Compact Combustor for Gas Turbine Engines,” In 16th Meeting of the International Society for Airbreathing Engines, 2003.
  16. Liu, Z. Wang and H. Tang, “Numerical Investigation of Turbulent Premixed Combustion in a High Acceleration Field,” Journal of Thermal Science and Engineering Applications, 14, 2020, pp. 1010-1022.
  17. Emami Koopaei and K. Mazaheri, “Numerical Investigation of the Effects of Blockage Ratio and Obstruction Geometry on Flame Acceleration and Overpressure of Gas Explosion,” Fuel and Combustion, 5, 2012, pp. 1-24. (in Persian)
  18. Hajialigol and K. Mazaheri, “Turbulent lean premixed flame responseto the imposed inlet oscillatingvelocity and effect of the equivalence ratio and inlet temperature on it,” Fuel and Combustion, 9, 2016, pp. 21-37. (in Persian)
  19. J. DeMarco, B. T. Bohan, E. A. Hornedo and M. D. Polanka, “Design Strategy for Fuel Introduction to a Circumferential Combustion Cavity,” AIAA Aerospace Sciences Meeting, 2018.
  20. J. Erdmann, A. W. Caswell and E. J. Gutmark, “Experimental Study on the Impact of High Centrifugal Body Forces on Constant Pressure, Propane-Air Flames,” AIAA SciTech Forum, 2019.
  21. P. Sykes, T. P. Gallagher and B. A. Rankin, “Effects of Rayleigh-Taylor instabilities on turbulent premixed flames in a curved rectangular duct,” Proceedings of the Combustion Institute, 38, 2020, pp. 6059-6066.
  22. J. Greenshields, OpenFOAM User Guide version 6, OpenFOAM Foundation Ltd, 2018.
  23. Y. Zhou, J. C. F. Pereira, “Large Eddy Simulation (2D) of a Reacting Plane Mixing Layer Using Filtered Density Function Closure,” Flow, Turbulence and Combustion, 64, 2000, pp. 279-300.
  24. E. Desjardin, S. H. Frankel, “Two-dimensional large eddy simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene–air turbulent jet flame,” Combustion and Flame, 119, 1999, pp. 121-132.
  25. Mercier, C. Mehl, B. Fiorina, “Filtered Wrinkled Flamelets model for Large-Eddy Simulation of turbulent premixed combustion,” Combustion and Flame, 205, 2019, pp. 93-108.
  26. Horvat, I. Kljenak, J. Marn, “Two-dimensional large-eddy simulation of turbulent natural convection due to internal heat generation,” International Journal of Heat and Mass Transfer, 44, 2001, pp. 3985-3995.
  27. Matos, F. A. Pinho, A. Silveira, “Large-eddy simulation of turbulent flow over a two-dimensional cavity with temperature fluctuations,” International Journal of Heat and Mass Transfer, 42, 1999, pp. 49-59.
  28. C. Cheng, F. P. Agel, “Evaluation of subgrid-scale models in large-eddy simulation of flow past a two-dimensional block,” International Journal of Heat and Fluid Flow, 44, 2013, pp.301-311.
  29. Blazek, “Computational Fluid Dynamics: Principles and Applications,” Elsevier, 2001.
  30. G. Weller, “The development of a new flame area combustion model using conditional averaging,” Thermo-fluids section report TF/9307, Imperial College of Science, Technology and Medicine, 1993.
  31. A. Libby and F. A. Williams, “In Turbulent Reacting Flows, Topics in Applied Physics,” Lecture Notes in Physics, Springer-Verlag, 44, 1980.
  32. Yoshizawa and K. Horiuti, “A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows,” Journal of the Physical Society of Japan, 54, 1985, pp. 2834-2839.
  33. Holzmann, Mathematics, Numerics, Derivations and OpenFOAM, First Edition, 2019.