تحلیل تجربی انتقال حرارت در مشعل متخلخل خانگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 تربیت مدرس مهندسی مکانیک

3 گروه تبدیل انرژی دانشکده مکانیک دانشگاه تربیت مدرس

چکیده

در تحقیق حاضر یک مشعل متخلخل خانگی با سوخت گاز طبیعی جهت برآورد انتقال حرارت و سطح آلاینده‌های آن  مورد بررسی آزمایشگاهی قرار گرفته است. مطابق استاندارد ملی، یک ظرف استاندارِ حاوی آب جهت انجام آزمون‌های بازده حرارتی، انتقال حرارت و آلاینده‌ها مورد استفاده قرار گرفته است. محیط متخلخل مورد استفاده از جنس سیلیکون کارباید بوده و بر روی بستر آزمونی که به همین منظور طراحی و ساخته شده، نصب شده است. ظرف حاوی آب در طی یک فرایند گرمایشی و در محدوده‌ی کاری از نرخ آتش مشعل، بیشترین بازده حرارتی خود را با مقدار 29% و برای فاصله‌ی منتخب D=1.5 cm بین سطح مشعل و کف ظرف به‌دست آورده است. این بازده، با کمترین میزان انتشار آلاینده‌های NOx و CO که به‌ترتیب 2.2ppm و  4ppm است، نیز همراه است. همچنین انتقال حرارت همرفتی کف ظرف و دیواره‌ی آن به‌ترتیب 58%  و 28%  به همراه تابش از سطح و تابش شعله که به‌ترتیب 2% و 12% کلی انتقال حرارت را به خود اختصاص می‌دهند. در آزمایش دیگر با ثابت بودن توان حرارتی مشعل، نسبت هم‌ارزی مشعل مورد بررسی قرار گرفته و بیشترین بازده حرارتی، متناظر با φ=0.998 و برابر با 23.9% به‌دست آمده است. به‌دست آوردن محدوده‌ی مناسب عملکردی مشعل متخلخل خانگی از سه جنبه‌ی نسبت هم‌ارزی، نرخ آتش (توان) و میزان تولید آلاینده در کنار تحلیل انتقال حرارت از منظر جابجایی و تشعشع سهم اصلی این تحقیق است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental analysis of heat transfer in a residentioal porous media burner

نویسندگان [English]

  • Hossein Soltanian 1
  • Mohammad Zabetian Targhi 2
  • Mehdi Maerefat 3
1 Department of mechanical engineering, Tarbiat modares university, Tehran, Iran
2 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
3 department of mechanical engineering,, Tarbiat Modares University
چکیده [English]

This efficiency is also associated with the lowest emissions of NOx and CO pollutants, which are 2.2ppm and 4ppm, respectively. Also, the convective heat transfer of the bottom of the dish and its wall, respectively, 58% and 28%, along with radiation from the surface and flame radiation, which account for 2% and 12% of the total heat transfer, respectively. In another experiment, with the constant heat output of the burner, the burner equivalence ratio was investigated and the highest thermal efficiency, corresponding to φ = 0.998 and equal to 23.9%, was obtained.
 
.

کلیدواژه‌ها [English]

  • Natural gas
  • porous burner
  • Thermal efficiency
  • convective heat transfer
  • Radiation
  1. De Soete G., , “Stability and propagation of combustion waves in inert porous media”, Proceedings of the symposium (international) on combustion, 13, 1967, pp. 959–966.
  2. Chafin C, Koenig M, Matthews RDK, Hall MJ, Nichol SP and Lim IG., “Experimental Investigation of Premixed Combustion Within Highly Porous Media”, Proceeding ASME/JSME Thermal Engineering Joint, 19, 1991, 219-224.
  3. Howell JR, Buckius RO., “Fundamentals of Engineering Thermodynamics”, McGraw–Hill, New York, 888.
  4. Trimis D and Durst F., “Combustion in a porous medium-advances and applications”, Combust Science and Technology, 121, 1996,  153–168.
  5. Shakiba SA, Ebrahimi R, Shams M and Yazdanfar Z., “Effects of foam structure and material on the performance of premixed porous ceramic burner” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 229, 2015, pp. 176-191.
  6. Al-attab KA, John Chung Ho, Zainal ZA., “Experimental investigation of submerged flame in packed bed porous media burner fueled by low heating value producer gas”, Experimental Thermal and Fluid Science, 62, 2015, pp. 1-8.
  7. Aekkaphon Chaelek, Usa Makmool Grare, Sumrerng Jugjai, “Self-aspirating/air-preheating porous medium gas burner”, Applied Thermal Engineering, 153, 2019, pp. 181-189
  8. Rabeeah Habib, Bijan Yadollahi, Ali Saeed, Mohammad Hossein Doranehgard, Larry K.B. Li, Nader Karimi, “Unsteady ultra-lean combustion of methane and biogas in a porous burner – An experimental study”, Applied Thermal Engineering, 182, 2021, pp. 1359-1365
  9. Khanna V, Goel R and Ellzey JL., “Measurements of emissions and radiation for methane combustion within a porous medium burner”, Combustion Science and Technology 99, 1994, pp. 133-142.
  10. Mujeebu MA, Abdullah MZ, Bakar MA, Mohamad AA, Abdullah MK., “A review of investigations on liquid fuel combustion in porous inert media” Progress in Energy and Combustion Science, 35, 2009, pp. 216-230.
  11. Mujeebu MA, Abdullah MZ, Bakar MA, Mohamad AA, Abdullah MK., “Applications of porous media combustion technology–a review”, Applied Energy, 86, 2009, pp. 1365-1375.
  12. Mujeebu MA, Abdullah MZ, Bakar MA, Mohamad AA, Muhad RM, Abdullah MK., “Combustion in porous media and its applications–a comprehensive survey” Journal of environmental management, 90, 2009, pp. 2287-2312.   
  13. Avdic F, Adzic M, Durst F.,2010, “Small scale porous medium combustion system for heat production in households”, Applied Energy, 87, 2010, pp. 2148-2155.
  14. Muthukumar , P.I. Shyamkumar, “Development of novel porous radiant burners for LPG cooking applications”, Fuel  112, 2013,  pp. 562–566
  15. Panigrahy, N. K. Mishra, S. C. Mishra and P. Muthukumar, 2016, “Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner”, Energy 95, 2016, pp. 404-414.
  16. K. Kaushik and P. Muthukumar, “Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner”, Energy 206, 2020, 102-118
  17. A. Ghorashi, S. A. Hashemi, S. M. Hashemi, M. Mollamahdi, “Experimental study on pollutant emissions in the novel combined porous-free flame burner”, Energy, 162, 2018, pp. 517-525
  18. Omidi and M. D. Emami, “Experimental investigation of premixed combustion and thermal efficiency in a porous heating burner”, International Journal of Energy Research, 45, 2020, pp. 1948-1958
  19. Mohammad Shafiey Dehaj, Reza Ebrahimi, Mehrzad Shams, Meisam Farzaneh, “Experimental analysis of natural gas combustion in a porous burner”, Experimental Thermal and Fluid Science, 84, 2017, pp. 134-143,
  20. Shabani Nejad Hoda, Seyyed Abdolreza Gandjalikhan Nassab, Jahanshahi Javaran Ebrahim, “Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners”, International Journal of Thermal Sciences, 145, 2019, pp. 1290-0729
  21. Sadaf Sobhani, Danyal Mohaddes, Emeric . B. Muhunthan, Matthias Ihme, “Modulation of Heat Transfer for Extended Flame Stabilization in Porous Media Burners via Topology Gradation”, Proceeding of the Combustion Institute, 37, 2019, pp. 5697-5704
  22. Fuqiang Song, Zhi Wen, Yuan Fang, Enyu Wang, Xunliang Liu, “Combustion Wave Propagation of a Modular Porous Burner with Annular Heat Recirculation”, Journal of thermal science, 29, 2020, 98-107.
  23. R. Caetano, Giulio Lorenzini, Andressa. R. Lhamby, Vinicyus. M. Guillet, Marcos. A. Klunk, Luiz. A. Rocha, “Experimental Assessment of Thermal Radiation Behavior Emitted by Solid Porous Material”, International Journal of Heat and Technology 38, 2020, pp. 1-8.
  24. Xinjian Chen, Junwei Li, Dan Zhao, Muhammad .t Rashid, Xinyuan Zhou and Ninjfei Wang, “Effects of porous media on partially premixed combustion and heat transfer in meso-scale burners fuelled with ethanol” , Energy, 224, 2021, 120-191.
  25. Bubnovich, H. Hernandez, M. Toledo, C. Flores, “Experimental investigation of flame stability in the premixed propane-air combustion in two-section porous media burner”, Fuel, 291, 2021, pp. 117-120.
  26. Igor Yakovlev, Anatoly Maznoy, Sergey Zambalov, Pore-scale study of complex flame stabilization phenomena in thin-layered radial porous burner, Combustion and Flame, Volume 231, 2021
  27. Roman V. Fursenko, Igor A. Yakovlev, Egor S. Odintsov, Sergey D. Zambalov, Sergey S. Minaev, Pore-scale flame dynamics in a one-layer porous burner, Combustion and Flame, Volume 235, 2022,
  28. Meghdadi Isfahani, A. H. (May 9, 2017). "Parametric Study of Rarefaction Effects on Micro- and Nanoscale Thermal Flows in Porous Structures." ASME.  Heat Transfer. September 2017; 139(9): 092601.
  29. Walter W. Yuen, “a neural network based correlation developed for a realistic simulation of the non-gray radiative heat transfer effect in three-dimensional gas-particle mixtures”, International Journal of Heat and Mass Transfer 52, 2009, pp. 3159-3168.
  30. Lytle, D. and Webb, B. W., “Air jet impingement heat transfer at low nozzle-plate spacings”. International Journal of Heat and Mass Transfer,  37, 1994, pp. 1687-1697.
  31. MacCarty and K. M. Bryden, “A heat transfer model for conceptual design of a biomass cookstove for developing countries”, the ASME 2013 International Design Engineering Technical & Computers and Information in Engineering, 192, 2013, pp. 201-206
  32. World Health Organization. WHO guidelines for indoor air quality: selected pollutants, 2010, Geneva: Switzerland World Health Organization; 2010.
  33. Tangestani, and A. H. Meghdadi Isfahani. “Experimental Evaluation of the Performance and Exhaust Emissions of Porous Medium Diesel and Otto Engines.” International journal of environmental science and technology, 17, 2020, pp. 1463-1474.