سینتیک و تعادل گوگردزدایی جذبی از سوخت مدل توسط کربن فعال سنتز شده از پسماند گلاب‌گیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فنی مهندسی بویین زهرا

2 کارشناس ارشد، مهندسی شیمی، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی

3 دانشگاه تربیت مدرس دانشکده شیمی

چکیده

چند نمونه کربن فعال ارزان قیمت از پسماند گلاب‌گیری به روش فعال‌سازی شیمیایی توسط عامل فعالساز KOH با نسبت‌های‌ عامل فعال‌ساز به پسماند گلاب‌گیری مختلف(5/0، 1 و 2) با نام‌های (ACR-0.5,ACR-1, ACR-2) تولید شد. یکی از نمونه‌ها توسط نانو ذرات مس بارگذاری شد. نمونه‌های تولید شده توسط روش‌های مختلفی از جمله FESEM، FTIR و BET آنالیز شدند. نمونه‌ها در گوگردزدایی از سوخت مدل شامل نرمال هپتان و ترکیب گوگرددار 4و6-دی‌متیل-دی‌بنزوتیوفن (4,6-DMDBT) مورد بررسی قرار گرفتند. نتایج نشان داد که نمونه‌های ACR با مساحت سطح بین 1330 تا 2155 متر مربع بر گرم به دست آمده اند. مساحت سطح BET و حجم حفره ها با افزایش نسبت عامل فعال ساز و بارگذاری مس افزایش پیدا کرد. بیشتر از 95% حداکثر ظرفیت جذب نمونه‌های مختلف در 10 دقیقه ابتدای آزمایش جذب بدست می‌آید. بازدهی نمونه‌های کربن فعال با افزایش نسبت عامل فعال‌ساز و بارگذاری مس، افزایش یافت. ترتیب جذب 4,6-DMDBT: ACR-2-Cu> ACR-2> ACR-1> ACR-0.5 است. حداکثر ظرفیت جذب نمونه ACR-2-Cu، به دلیل حجم حفرات میکرو و حضور نانو ذارت مس mg S/g 24 است. داده‌های سینتیکی به خوبی توسط مدل‌های شبه مرتبه اول و مرتبه دوم توصیف شدند و داده‌های جذب تعادلی نیز به خوبی توسط مدل‌های لانگمیر و فرندلیچ برای تخمین پارامترهای جذب، برازش شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorption Kinetics and Equilibrium of Model Fuel Desulfurization by Activated Carbon Synthesized from Rose Damascena Waste

نویسندگان [English]

  • elham moosavi 1
  • Davod Hajian 2
  • Ramin Karimzadeh 3
1 Department of materials, chemical and polymer engineering, buein zahra technical university, buein zahra, qazvin, Iran
2 Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
3 Tarbiat Modares University
چکیده [English]

Samples of low-cost activated carbons were synthesized from rose damascena waste by chemical activation using KOH as an activator with different KOH to rose damascena waste ratios (0.5, 1 and 2) as named ACR-0.5, ACR-1, ACR-2.  One sample was loaded with copper nanoparticles (ACR-2-Cu). The synthesized activated carbons have been characterized using FESEM (Field Emission Scanning electron microscopy), FTIR (Fourier transform infrared spectroscopy) and BET surface area analyzer. All activated carbon samples were used in desulfurization of a model diesel fuel composed of n-Heptane   4,6-dimethyldibenzothiophene (4,6-DMDBT) as sulfur containing compound. Results showed that ACRs with BET surface areas up to 1330-2155  were obtained. The BET surface areas and pore volumes increased with KOH to rose damascena waste ratio and Cu functionalization. More than 95% of 4,6-DMDBT adsorption capacity was reached in the first 10 min of adsorption experiment. The efficiency of sulfur removal by ACR was increased by enhancement the KOH to rose damascena waste ratio and by Cu functionalization. The 4,6-DMDBT adsorption capacity follows the order: ACR-2-Cu> ACR-2> ACR-1> ACR-0.5. The maximum adsorption capacity of ACR-2-Cu sample to 4,6-DMDBT was 24 mg S/gr adsorbent and the adsorption capacity was related to the volume of narrow micropores and Cu nanoparticles. The kinetic data was well described by pseudo-second and first-order kinetic models and the equilibrium adsorption data was well fitted to the Langmuir and Freundlich models to estimate the adsorption parameters.
 
.

کلیدواژه‌ها [English]

  • Rose Damascena waste
  • Activated Carbon
  • Desulfurization
  • 4
  • 6-DimethylDibenzothiophene
  • Adsorption
  1. Song, “An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel,” Catalysis Today, 86, 2003, pp. 211–263.
  2. O. S. Olawumi, F. Obazu and M. O. Daramola, “Biodesulfurization of Petroleum Distillates-Current Status, Opportunities and Future Challenges,” Environments, 85, 2017, pp.1-20.
  3. A. C. Lloyd, T. A. Cackette, “Diesel Engines: Environmental Impact and Control,” Journal of the Air & Waste Management Association, 51, 2011, pp. 809-847.
  4. X. Ma, A.Zhou and C. Song, “A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption,” Catalysis Today, 123, 2007, pp. 276–284.
  5. G. Yu, S. Lu, H. Chen, and Z. Zhong, “Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid,” Energy and Fuels, 19, 2005, pp. 447-452.
  6. W. N. A. W. Mokhtar, W.A.W.AbuBakar, R. Ali, A.A.A. Kadir, “Catalytic oxidative desulfurization of diesel oil by Co/Mn/Al2O3 catalysts—tert-butyl hydroperoxide (TBHP) system: preparation, characterization, reaction, and mechanism,” Clean Technologies and Environmental Policy, 17, 2015, pp. 1487–1497.
  7. J.B. Bhasarkar, S. Chakma, V.S. Moholkar, “Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound,” Ultrasonics Sonochemistry, 24, 2015, pp. 98–106.
  8. B. Mokhtari, A. Akbari and M.R. Omidkhah, “Superior Deep Desulfurization of Real Diesel over MoO3/Silica Gel as an Efficient Catalyst for Oxidation of Refractory Compounds,” Energy and Fuels, 33, 2019, pp. 7276−7286.
  9. H. Wang, C. Song, S. Chen, R. Chen, P. Sun, and T. Chen, “Hierarchically Mesoporous Titanosilicate Single-Crystalline Nanospheres for Room Temperature Oxidative-Adsorptive Desulfurization,” ACS Applied Nano Materials, 10, 2019, pp. 6602–6610.
  10. S.A. Dharaskar, K.L. Wasewar, M.N. Varma and D.Z. Shende, “Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids,” Journal of Energy, 2013, 2013, pp.1-4.
  11. K. R. Balinge, A. G. Khiratkar, M. Krishnamurthy, D. S. Patle, K.K. Cheralathan and P. R. Bhagat, “Deep-desulfurization of the petroleum diesel using the heterogeneous carboxyl functionalized poly-ionic liquid,” Resource-Efficient Technologies, 2, 2016, pp. 105–113.
  12. D. Julião, A. C. Gomes, M. Pillinger, A. D. Lopes, R. Valença, J. C. Ribeiro, I. S. Gonçalves and S.S.Balula, “Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvent,” Journal of Molecular Liquids, 309, 2020, pp. 113093.
  13. F.L. Li, P. Xu, C. Q. Ma, L. L. Luo, X. S. Wang, “Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B,” FEMS Microbiology Letters, 223, 2003, pp. 301-307.
  14. S. Guobin, X. Jianmin, Z. Huaiying and L. Huizhou, “Deep desulfurization of hydrodesulfurized diesel oil by Pseudomonas delafieldii R-8. J,” Journal of Chemical Technology & Biotechnology, 80, 2005, pp. 420–424.
  15. B. Yu,P. Xu, Q. Shi, C. Ma, “Deep Desulfurization of Diesel Oil and Crude Oils by a Newly Isolated Rhodococcus erythropolis Strain,” Applied and Environmental Microbiology, 72, 2006, pp. 54–58.
  16. B. Saha , S. Vedachalam, A.K. Dalai, “Review on recent advances in adsorptive desulfurization,” Fuel Processing Technology, 214, 2021, pp. 106685.
  17. M. Ishaq, S. Sultan, I. Ahmad, H. Ullah M. Yaseen and A. Amir, “Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent,” Journal of Saudi Chemical Society, 21, 2017, pp. 143-151.
  18. F. Subhan, S. Aslam, Z. Yan, Z. Liu, U.J. Etim, A. Wadoodc and R. Ullah, “Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization,” Chemical Engineering Journal, 354, 2018, pp. 706–715.
  19. D. R. Dong, Z. Yun, Z. C. Hang, W. Huan, M. Z. Sheng, Q. Y. Cai, S. Z. Lin and S.L. Juan, “Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite,” Journal of Fuel Chemistry and Technology, 46, 2018, pp. 451-458.
  20. Y. Yang, J. Li, G. Lv and L. Zhang, “Novel method to synthesize Ni2P/SBA-15 adsorbents for the adsorptive desulfurization of model diesel fuel,” Journal of Alloys and Compounds, 745, 2018, pp. 467-476.
  21. K.X. Lee, G. Tsilomelekis and J.A. Valla, “Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics,” Applied Catalysis B: Environmental, 234, 2018, pp. 130–142.
  22. Q. Du, Y. Guo, P. Wu and H. Liu, “Synthesis of hierarchically porous TS-1 zeolite with excellent deep desulfurization performance under mild conditions,” Microporous and Mesoporous Materials, 264, 2018, pp. 272–280.
  23. M. Zheng, H. Hu, Z. Ye, Q. Huang and X. Chen, “Adsorption desulfurization performance and adsorption-diffusion study of B2O3 modified Ag-CeOx/TiO2-SiO2,” Journal of Hazardous Materials, 362, 2019, pp. 424–435.
  24. Ye Zhanga, D.L., L. Zhoua, M. Tanga, X. Lia and Y. Yang, “A mullite etching route to tabular α-alumina crystals and application in adsorption desulfurization for dibenzothiophene,” Fuel, 216, 2018, pp. 10–15.
  25. N.A. Khan, C.M. Kim and S.H. Jhung, “Adsorptive desulfurization using Cu–Ce/metal–organic framework: Improved performance based on synergy between Cu and Ce,” Chemical Engineering Journal, 311, 2017, pp. 20–27.
  26. Ke Yang, Y. Yan, W. Chen, H. Kang, Y. Han, W. Zhang, Y. Fan and Z. Li, “The high performance and mechanism of metal–organic frameworks and their composites in adsorptive desulfurization,”Polyhedron,152, 2018, pp. 202–215.
  27. S. Ban, K. Long, J. Xie, H. Sun, and H. Zhou, “Thiophene Separation with Silver-Doped Cu-BTC Metal−Organic Framework for Deep Desulfurization,” Industrial & Engineering Chemistry: Research, 57, 2018, pp. 2956−2966.
  28. X. Guan, Y. Wang, W. Cai, “A composite metal-organic framework material with high selective adsorption for dibenzothiophene,” Chinese Chemical Letters, 30, 2019, pp. 1310-1314.
  29. Y. Song, D. Yang, S. Yu, X. Teng, Z. Chang, F. Pana, X. Bu, Z. Jiang, B. Wang, S. Wang and X. Cao, “Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance,” Separation and Purification Technology, 210, 2019, pp. 258–267.
  30. D.R. Radwan, A. Matloob, S. Mikhail, L. Saad and D. Guirguis, “Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel,” Journal of Hazardous Materials, 373, 2019, pp. 447–458.
  31. L. P. Hou, R.X. Zhao, X. P. Li and X. H. Gao, “Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil,” Applied Surface Science, 434, 2018, pp. 1200–1209.
  32. A.B. Dehkordi, E. Shams and N. Farzin Nejad, “Synthesis of Iron Oxide Nanoparticles Modified Mesoporous Carbon and Investigation of Its Application for Removing Dibenzothiophene from Fuel Model,” Environmental Nanotechnology, Monitoring and Management, 10, 2018, pp. 179-188.
  33. S. Kumagai, H. Ishizawa and Y. Toida, “Influence of solvent type on dibenzothiophene adsorption onto activated carbon fiber and granular coconut-shell activated carbon,” Fuel, 89, 2010, pp. 365–371.
  34. M. A. Yahya, Z. A. Qodah and C.W. Z. Ngah, “Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review,” Renewable and Sustainable Energy Reviews, 46, 2015, pp. 218–235.
  35. K. S. Ukanwa, K. Patchigolla, R. Sakrabani, E. Anthony and S. Mandavgane, “A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass,” Sustainability,11, 2019, pp. 6204.
  36. R.I. Kosheleva, A.C. Mitropoulos, G.Z. Kyzas, “Synthesis of activated carbon from food waste,” Environmental Chemistry Letters, 17, 2019, pp. 429–438.
  37. T.A. Saleh, G.I. Danmaliki, “Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes,” Journal of the Taiwan Institute of Chemical Engineers, 60, 2016, pp. 460–468.
  38. M.S. Shamsuddina, N.R.N. Yusoffa and M.A.Sulaiman, “Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation,” Procedia Chemistry,19, 2016, pp. 558 – 565.
  39. E. Vunain, D. Kenneth andT. Biswick, “Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: equilibrium and kinetics studies,” Applied Water Science, 7, 2017, pp. 4301–4319.
  40. Y.A. Alhamed, H. S. Bamufleh, “Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2,” Fuel, 88, 2009, pp. 87–94.
  41. M. Açıkyıldız, A. Gürses and S. Karac, “Preparation and characterization of activated carbon from plant wastes with chemical activation,” Microporous and Mesoporous Materials, 198, 2014, pp. 45-49.
  42. T. Nuilerd, P. Pongyeela, and J. Chungsiriporn, “Pellet activated carbon production using parawood charcoal from gasifier by KOH activation for adsorption of iron in water,” Songklanakarin Journal of Science & Technology, 40, 2018, pp. 264-270.
  43. C.K. Lee, J.S. Yu and H.J. Lee, “Determination of aromaticity indices of thiophene and furan by nuclear magnetic resonance spectroscopic analysis of their phenyl esters,” Journal of heterocyclic chemistry, 39, 2002, pp. 1207-1217.
  44. Z. Xiao, X. Gao, M. Shi, G. Ren, G. Xiao, Y. Zhu and L. Jiang, “China rose-derived tri-heteroatom co-doped porous carbon as an efficient electrocatalysts for oxygen reduction reaction,” RSC Advances, 6, 2016, pp. 86401–86409.
  45. S. Mathew, P. Kadam and M. Rai, “Symmetric and Asymmetric Supercapacitors derived from Banyan tree leaves and Rose Petals,” IEEE Students' Conference on Electrical, Electronics and Computer Science. 2016.