بهینه سازی تولید هیدروژن با استفاده از نانوفتوکاتالیست های تیتانیا/زئولیت فرآوری شده با بکارگیری روش سطح پاسخ براساس طراحی باکس-بنکن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه کردستان

2 دانشگاه رازی

10.22034/jfnc.2021.272744.1266

چکیده

در پژوهش حاضر، روش سطح پاسخ براساس طراحی باکس-بنکن با هدف بهینه ­سازی تولید فتوکاتالیستی هیدروژن با استفاده از فتوکاتالیست تیتانیا-کلینوپتیلولیت فرآوری­ شده بررسی شد. بدین ­ترتیب، در ساخت فتوکاتالیست، به­ منظور دستیابی به یک پایه طبیعی مؤثر، همگن و تکرارپذیر، از روش فرآوری ترکیبی تبادل یونی-بازشویی استفاده شد و بارگذاری 10 درصد وزنی فاز فعال TiO2 بر روی پایه کلینوپتیلولیت فرآوری­شده به­ کمک تابش اولتراسوند در طول فرایند سنتز به­روش SSD انجام گرفت. نتایج آنالیزهای شناسایی نشان از خصوصیات فیزیکی-شیمیایی مناسب فتوکاتالیست سنتز­شده دارند که آن را برای واکنش فتوکاتالیستی شکافت آب مناسب و مؤثر می­کند. براساس نتایج جدول آنالیز واریانس هر سه متغیر و پارامتر عملیاتی میزان pH محلول، مقدار بارگذاری فتوکاتالیست و مقدار درصد حجمی عامل الکترون­ دهنده بر روی میزان تولید هیدروژن اثرگذارند. در میان این سه متغیر، میزان pH محلول مؤثرترین پارامتر شناخته می­ شود. از بین مدل ­های مورد ارزیابی در روش سطح پاسخ، مدل مرتبه ­دوم با بالاترین مقدار ضریب همبستگی (0.9967=R2 و 0.9942=R2adj) بیشترین تطابق را با داده ­های آزمایشگاهی دارد. با بررسی نحوه اثرگذاری این پارامترها و تعاملاتشان روی پاسخ، می­توان دریافت که حداکثر مقدار هیدروژن تولیدی در شرایط بهینه pH بازی برابر با 10، مقدار کاتالیست g L-1 1/1 و مقدار عامل الکترون­دهنده 12.5 درصد حجمی به ­دست می­ آید.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Hydrogen Production over TiO2/Treated Zeolite Nanophotocatalyst using Response Surface Box-Behnken Design

نویسندگان [English]

  • Rojiar Akbari Seneh 1
  • Shahram Sharifnia 2
  • Gholamreza Moradi 2
1 University of Kurdistan
2 Razi University
چکیده [English]

In present study, the optimization of hydrogen production by water splitting over TiO2/treated clinoptilolite photocatalyst was investigated using Box–Behnken design (BBD) combined with response surface methodology (RSM). In the photocatalyst preparation, the combined ion exchange-alkaline treatment was used to achive a 
Optimization of Hydrogen Production over TiO2/Treated Zeolite Nanophotocatalyst using Response Surface Box-Behnken Design 
 
Rojiar Akbari Sene1*, Shahram Sharifnia2 and Gholamreza Moradi3
1- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran, r.akbari@uok.ac.ir
2- Catalyst Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran, sharif@razi.ac.ir
3- Catalyst Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran, gmoradi@razi.ac.ir
*Corresponding author
(Received: 2021.02.11, Received in revised form: 2021.06.08, Accepted: 2021.07.04)
 
In present study, the optimization of hydrogen production by water splitting over TiO2/treated clinoptilolite photocatalyst was investigated using Box–Behnken design (BBD) combined with response surface methodology (RSM). In the photocatalyst preparation, the combined ion exchange-alkaline treatment was used to achieve a chemical homogenous, reproducible and effective natural support. Moreover, 10 wt.% of TiO2 nanoparticles was loaded over zeolitic supports using facile and cost effective solid state dispersion (SSD) method in the presence of ultrasound irradiation. The characterization results indicated suitable optical and physico-chemical properties of the as-synthesized photocatalyst which making it effective in the water splitting reaction. The operational variables considered in Box-Behnken method included pH solution, photocatalyst dosage and sacrificial agent concentration. Based on the ANOVA results, all three process variables affect the hydrogen production. Among them, the most significant effect is attributed to pH solution. The application of the RSM resulted in the formulation of several models out which the quadratic model with the highest value of the determined R2 coefficients (R2=0.9967 and R2adj=0.9942) was adjudged to adequately fit the experimental data. By examining how the process variables and their interactions affect the response, it can be found that the maximum efficiency of hydrogen production was obtained at optimum conditions of alkaline solution pH of 10, catalyst dosage of 1.1 g/L and sacrificial agent concentration of 12.5 vol.%.

کلیدواژه‌ها [English]

  • Water Splitting Reaction
  • Hydrogen production
  • Response Surface Methodology
  • Box-Behnken design
  • Titania
  1. Li and X. Cui, “A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution,” International Journal of Hydrogen Energy, 39, 2014, pp. 19877-19886.
  2. Sharma, M. R. Pai, G. Kaur, Divya, V. R. Satsangi, S. Dass and R. Shrivastav, “Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water,” Renewable Energy, 136, 2019, pp. 1202-1216.
  3. Xu, J. Ng, X. Zhang, H. Bai and D. Sun, “Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water,” International Journal of Hydrogen Energy, 35, 2010, pp. 5254-5261.
  4. Long, J. Li, L. Wu and X. Li, “Enhanced photocatalytic performance of platinized CdS/TiO2 by optimizing calcination temperature of TiO2 nanotubes,” Materials Science in Semiconductor Processing, 26, 2014, pp. 107-111.
  5. A. Ismail and D. W. Bahnemann, “Photochemical splitting of water for hydrogen production by photocatalysis: A review,” Solar Energy Materials and Solar Cells, 128, 2014, pp. 85-101.
  6. M. Navarro, M. C. Sanchez, M. C. Alvarez-Galvan, F. Valle and J. L. G. Fierro, “Hydrogen production from renewable sources: biomass and photocatalytic opportunities,” Energy & Environmental Science, 2, 2009, pp. 35-54.
  7. Ni, M. K. H. Leung, D. Y. C. Leung and K. A. Sumathy, “A review and recent developments in photocatalytic water-splitting using for hydrogen production,” Renewable and Sustainable Energy Reviews, 11, 2007, pp. 401-425.
  8. Solakidou, A. Giannakas, Y. Georgiou, N. Boukos, M. Louloudi and Y. Deligiannakis, “Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping,” Applied Catalysis B: Environmental, 254, 2019, pp. 194-205.
  9. Jiang, K. Y. Lee, C. M. A. Parlett, M. K. Bayazit, C. C. Lau, Q. Ruan, S. J. A. Moniz, A. F. Lee and J. Tang, “Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production,” Applied Catalysis A: General, 521, 2016, pp. 133-139.
  10. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and H. Li, “Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite,” Powder Technology, 274, 2015, pp. 88-97.
  11. Enzweiler, P. H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, S. Olse and N. R. C. Fernandes, “Evaluation of Pd-TiO2/ZSM-5 catalysts composition effects on hydrogen production by photocatalytic water splitting,” International Journal of Hydrogen Energy, 43, 2018, pp. 6515-6525.
  12. Enzweiler, P. H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, S. Olse and N. R. C. Fernandes, “Catalyst concentration, ethanol content and initial pH effects on hydrogen production by photocatalytic water splitting,” Journal of Photochemistry and Photobiology A: Chemistry, 388, 2020, pp. 112051.
  13. Baerlocher, W. M. Meier and D. H. Olson, HEU, in Atlas of Zeolite Framework Types, Amsterdam, Elsevier, 2001, pp. 146-147.
  14. Akbari Sene, G. R. Moradi and S. Sharifnia, “Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods,” Ultrasonics Sonochemistry, 37, 2017, pp. 490-501.
  15. Rahmani, M. Haghighi and M. Amini, “The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene,” Journal of Industrial and Engineering Chemistry, 31, 2015, pp. 142-155.
  16. Ates and C. Hardacre, “The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments,” Journal of Colloid and Interface Science, 372, 2012, pp. 130-140.
  17. Rahmani, M. Haghighi and S. Mahboob, “CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability,” Ultrasonics Sonochemistry, 33, 2016, pp. 150-63.
  18. Rahmani and M. Haghighi, “Sono-dispersion of Cr over nanostructured LaAPSO-34 used in CO2 assisted dehydrogenation of ethane: Effects of Si/Al ratio and La incorporation,” Journal of Natural Gas Science and Engineering, 27, 2015, pp. 1684-701.