تحلیل تأثیرپذیری آلاینده‌های CO و NOx در صورت تغییر مشخصه‌های جت‌های پایدارکننده در یک محفظه احتراق مدل توربین گاز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علم و صنعت ایران

2 تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

10.22034/jfnc.2021.269803.1260

چکیده

در مقاله حاضر به بررسی و تحلیل تأثیرپذیری آلاینده‌های NOx وCO در صورت تغییر مشخصه‌های جت‌های پایدارکننده درون محفظه احتراق مدل توربین گاز پرداخته شده است. تغییر مشخصه‌های این جت‌ها با در نظر گرفتن برهم‌کنش میان آن‌ها مورد بررسی و تحلیل واقع شده است. در پژوهش‌های پیشین، اثر تغییر هم‌زمان مشخصه‌ها مورد مطالعه قرار نگرفته بود، لذا، در این مقاله، به این موضوع پرداخته شده است.   برای شبیه‌سازی جریان دو فاز داخل محفظه احتراق، برای فاز گازی از دیدگاه اویلری و برای پاشش سوخت از دیدگاه لاگرانژی استفاده شده است. برای مدل‌سازی فرآیند احتراق، رهیافت‌ RANS، مدل آشفتگی Realizable k-ε، مدل‌ انتقال حرارت تشعشعی جهات مجزاء و مدل‌‌ احتراقی فلیملت پایا استفاده شده است. مدل‌سازی NOx به صورت پس‌پردازش و با مدل‌ نرخ محدود انجام گرفته است. با به‌کارگیری تحلیل حساسیت به مطالعه تأثیرپذیری آلاینده‌ها‌ی CO و NOx از متغیرهای ورودی شامل قطر، زاویه و موقعیت جت‌های پایدارکننده پرداخته شده است. داده‌های عددی با استفاده از روش طراحی آزمایشات(DOE) و مدل فاکتوریل کامل، مدل‌سازی و تولید شده است. سپس، نتایج با استفاده از تحلیل واریانس(ANOVA) مورد بررسی قرار گرفته است. نتایج نشان داد که با در نظر گرفتن برهمکنش میان مشخصه‌های جت‌های پایدارکننده، کمترین و بیشترین مقدار خروجی آلاینده  به­ ترتیب برابر با  5.82 و  26.22 بوده و کمترین و بیشترین مقدار بیشینه تولید آلاینده  به ترتیب برابر با 5.99 و 14.7 کسر مولی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of susceptibility of CO and NOx pollutants due to change of stabilizing jets characteristics in a gas turbine model combustion chamber

نویسندگان [English]

  • Farzad Bazdidi-Tehrani 1
  • Alireza Teymoori 1
  • Mehdi Ghiyasi 2
1 School of Mechanical Engineering, Iran Univ. of Science and Technology
2 Energy conversion, mechanical engineering school. Iran University of Science & Technology
چکیده [English]

The purpose of the present study was to investigate the susceptibility of NOx and CO pollutants due to the change of stabilizing jets characteristics in a gas turbine model combustion chamber. The change of stabilizing jet characteristics were analyzied according to their interactions. To simulate the two-phase flow inside the combustion chamber, the Eulerian method was used for gas flow and the Lagrangian method was used for spraying the fuel. For simulating the combustion
The purpose of the present study was to investigate the susceptibility of NOx and CO pollutants due to the change of stabilizing jets characteristics in a gas turbine model combustion chamber. The change of stabilizing jet characteristics was analyzed according to their interactions. To simulate the two-phase flow inside the combustion chamber, the Eulerian approach was used for gas flow and the Lagrangian approach was employed for spraying the fuel. For simulating the combustion process inside the combustion chamber, the RANS approach, the Realizable k-ε model for turbulence, Discrete Ordinates Model (DOM) for radiant heat transfer and steady flamelet combustion model were applied. NOx modeling was done by post-processing with a finite rate model. Using a sensitivity analysis, the effects of variations of input variables including diameter, angle and position of the stabilizing jets on output variables were studied. Numerical data were generated by using Design of Experiments (DOE) and full factorial model. The results were inspected by the means of analysis of variance (ANOVA). The results indicated that with considering the interaction among jets characteristics, the trends of pollutants changes could be observed more accurately. Nevertheless, this was not possible without considering the interactions. 
The purpose of the present study was to investigate the susceptibility of NOx and CO pollutants due to the change of stabilizing jets characteristics in a gas turbine model combustion chamber. The change of stabilizing jet characteristics was analyzed according to their interactions. To simulate the two-phase flow inside the combustion chamber, the Eulerian approach was used for gas flow and the Lagrangian approach was employed for spraying the fuel. For simulating the combustion process inside the combustion chamber, the RANS approach, the Realizable k-ε model for turbulence, Discrete Ordinates Model (DOM) for radiant heat transfer and steady flamelet combustion model were applied. NOx modeling was done by post-processing with a finite rate model. Using a sensitivity analysis, the effects of variations of input variables including diameter, angle and position of the stabilizing jets on output variables were studied. Numerical data were generated by using Design of Experiments (DOE) and full factorial model. The results were inspected by the means of analysis of variance (ANOVA). The results indicated that with considering the interaction among jets characteristics, the trends of pollutants changes could be observed more accurately. Nevertheless, this was not possible without considering the interactions. 
.

کلیدواژه‌ها [English]

  • Gas turbine model combustion chamber
  • Sensitivity analysis
  • Full factorial
  • NOx
  • CO
  1. Kurreck, M. Willmann and S. Wittig, “Prediction of the three-dimensional reacting two-phase flow within a jet-stabilized combustor,” Journal of Engineering for Gas Turbines and Power, 120, 1998, pp. 77-83.
  2. Zeinivand and F. Bazdidi-Tehrani, “Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor,” Applied energy, 92, 2012, pp. 348-360.
  3. Alemi and M. R. Zargarabadi, “Effects of jet characteristics on NO formation in a jet-stabilized combustor,” International Journal of Thermal Sciences, 112, 2017, pp. 55-67.
  4. Amani, M. Akbari and S. Shahpouri, “Multi-objective CFD optimizations of water spray injection in gas-turbine combustors,” Fuel, 227, 2018, pp. 267-278.
  5. Zhang and et al., “Lean ignition and blow-off behaviour of butyl butyrate and ethanol blends in a gas turbine combustor,” Fuel, 239, 2019, pp. 1351-1362.
  6. ANSYS Fluent, Theory Guide 19.2, Ansys Inc. USA, 2018.
  7. Bauer and et al., “Local measurements in a three dimensional jet-stabilized model combustor, in Turbo Expo: Power for Land, Sea, and Air,” American Society of Mechanical Engineers, the International Gas Turbine and Aeroengine Congress and Exposition Houston, Texas, 78804, 1995, p. V003T06A015.
  8. Albring and G. K. Batchelor, An Introduction to Fluid Dynamics, S. m. Fig. Cambridge University Press, Preis geb, 48, No. 4, pp. 292, 1968.
  9. Gosman and E. Loannides, “Aspects of computer simulation of liquid-fueled combustors,” Journal of energy, 7, No. 6, 1983, pp. 482-490.
  10. Berlemont, M. Grancher and G. Gouesbet, “Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach,International journal of heat and mass transfer, 38, No. 16, 1995, pp. 3023-3034.
  11. Sevik and S. Park, “The splitting of drops and bubbles by turbulent fluid flow,” Journal of Fluids and Engineering, 95, No. 1, 1973, pp. 53-60.
  12. H. Shih and et al., “A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows-Model development and validation,” Comput Fluids, 24, No. 3, pp. 227-238, 1995.
  13. Pitsch and N. Peters, “A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects,” Combustion and Flame, 114, No. 1-2, 1998, pp. 26-40.
  14. Veynante and L. Vervisch, “Turbulent combustion modeling,” Progress in energy and combustion science, 28, No. 3, pp. 193-266, 2002.
  15. Peters, Turbulent Combustion, Cambridge university press, Measurement Science and Technology, 2000.
  16. Durakovic, “Design of experiments application, concepts, examples: State of the art,” Periodicals of Engineering and Natural Sciences, 5, No. 3, 2017, pp. 421-439.
  17. L. Müller and et al., “Design of experiments and method development,” Solid-Phase Extraction, Elsevier, 2020, pp. 589-608.
  18. A. Fisher, Statistical methods for research workers, in Breakthroughs in statistics, New York, Springer, NY, 1992, pp. 66-70.
  19. Minitab, “MINITAB 19.1”, 2019.
  20. ANSYS ICEM CFD, Theory Guide 19.2, Ansys Inc. USA, 2018.
  21. A. Hoffman and S. T. Chiang, Computational Fluid Dynamics, Engineering Education System, 2, 2000.
  22. De Soete, “Overall Reaction Rates of NO & N2 Formation from Fuel Nitrogen,” Symposium (international) on Combustion, 15, Toshi Center Hall Tokyo, Japan, pp. 1093-1102, 1975.
  23. B. Zeldovich, P. Y. Sadovinikov and D. A. Frank-Kamenetskii, Oxidation of Nitrogen in Combustion, Publishing House of the Acad of Sciences of USSR, 1947.
  24. Westbrook and F. Dryer, “Chemical Kinetic Modelling of Hydrocarbon Combustion,” Progress in Energy and Combustion Science, 10, 1984, pp. 1-57.
  25. Toof, “A model for the prediction of thermal, prompt, and fuel NOx emissions from combustion turbines,ASME J. Eng. Gas Turbines Power, 108, 1986, pp. 340-347.