بررسی آزمایشگاهی پدیده خاموشی شعله مخلوط متان و هوا با حضور صفحات سوراخ دار و موانع متخلخل در یک محفظه بسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه صنعتی شاهرود

2 دانشیار دانشگاه صنعتی شاهرود

3 دانشگاه صنعتی شاهرود، استاد

چکیده

مطالعه و بررسی الگوی احتراق در زمان برخورد شعله با موانع برای افزایش ایمنی در صنایع مختلف از اهمیت زیادی برخوردار است. در این مقاله، به بررسی تجربی رفتار خاموشی شعله با حضور موانع متخلخل و صفحات سوراخ­دار پرداخته شده است. از یک محفظه بسته با حضور موانع متخلخ و صفحات سوراخ­دار 2 میلی­ متری و از یک دوربین فیلم­برداری با سرعت بالا برای تصویربرداری از رفتار انتشار شعله استفاده شده است. تمامی آزمایش­ ها در فشار اتمسفر انجام شده است. مطابق تصاویر ثبت ­شده، شعله پس از برخورد به موانع با دو الگوی دیوارجانبی (Side wall) و نوک­به­ نوک (head on) خاموش می ­شود. در این مطالعه، اثر موقعیت موانع از سیستم جرقه بر فاصله خاموشی شعله، الگوی خاموشی شعله و سرعت انتشار شعله مورد بررسی و آشکارسازی قرار گرفته است. موقعیت موانع متخلخل و صفحات سوراخ­دار  2 میلی­ متری در فاصله خاموشی شعله تأثیرگذار است. هنگامی که صفحه سوراخ ­دار در فاصله مشخصی از سیستم جرقه قرار دارد، شعله پس از انتشار و  برخورد به صفحه خاموش می­شود و در حالتی که مانع متخلخل در همین فاصله از سیستم جرقه قرار داده می­شود، شعله پس از برخورد به مانع متخلخل، از مانع عبور می­کند. طبق نتایج به ­دست ­آمده و عکس ­برداری­ های انجام­ شده، حضور موانع متخلخل در یک محفظه بسته نسبت به صفحات سوراخ­دار باعث افزایش فاصله خاموشی و سرعت نوک شعله می ­شود. با حضور موانع متخلخل نسبت به صفحات سوراخ ­دار فاصله خاموشی شعله از 16/6 سانتی­متر به 25 سانتی ­متر افزایش می ­یابد. همچنین، سرعت نوک شعله در محفظه با استفاده از موانع متخلخل با افزایش حدود 128 درصد از 2/5 به 5/7 متر بر ثانیه رسیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study of flame quenching phenomenon of mixed methane and air in the presence of perforated plates and porous barriers in a closed chamber

نویسندگان [English]

  • Hadi Younesian 1
  • M M Shahmardan 3
1 Shahrood univ. of tech.
3 Shahrood Univ. of Tech.
چکیده [English]

Experimental study of flame quenching phenomenon of mixed methane and air in the presence of perforated plates and porous barriers in a closed chamber
 
Hadi Younesian1, Mohsen Nazari*2 and Mohammad Mohsen Shahmardan 3
1- Department of Mechanical Engineering, Energy Conversion, Shahrood University of Technology, Iran, H_younesian@yahoo.com
2- Department of Mechanical Engineering, Energy Conversion, Associate Professor Shahrood University of Technology, Iran, mnazari@shahroodut.ac.ir
3- Department of Mechanical Engineering, Energy Conversion, Professor Shahrood University of Technology, Iran, mmshahmardan@shahroodut.ac.ir
* Corresponding author
(Received: 2020.12.18, Received in revised form: 2021.04.30, Accepted: 2021.05.17)
 
Investigation the combustion pattern when the flame hits with obstacles is very important to increase safety in various industries. In this paper, the flame quenching behavior with the presence of porous barriers and perforated plates is investigated. In this study, a closed chamber with the presence of porous barriers and 2 mm perforated plates and a high-speed video camera were used to capture the flame propagation behavior process. All experiments were performed at atmospheric pressure. According to the recorded images, the flame quenches in two modes; side wall and head on, after hitting the obstacles. In this study, the effects of the position of obstacles from the ignition system on the flame quenching distance, flame quenching pattern, and flame propagation speed have been investigated. The position of the porous barriers and 2 mm perforated plates is effective in the flame quenching distance. When the perforated plate is 16.6 cm away from the ignition system, the flame quenches after hitting the first obstacle. However, when the porous barrier is located at a distance of 16.6 cm from the ignition system, the flame passes through the barrier after hitting the barrier. According to the results, the presence of porous barriers in a closed chamber compared to perforated plates increases the quenching distance and the speed of the flame tip. For example, with the presence of porous barriers relative to perforated plates, the flame quenching distance increases from 16.6 cm to 25 cm. Also, the flame tip speed has increased by about 128% from 2.5 to 5.7 m/s using porous obstacles.
 
 
me extinction distance increases from 16.6 cm to 25 cm.

کلیدواژه‌ها [English]

  • Keywords: Flame quenching
  • quenching pattern
  • perforated plates
  • porous barriers
  • quenching distance
  • methane and air mixture
  1. Cao, J. Ren, Y. Zhou, Q. Wang, X. Gao and M. Bi, “Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive,” J. Hazard Mater, 285, 2015, pp. 311–318.
  2. Chen, Y. Zhang, Q. Zhang, S. Ren and J. Wu, “Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders,” Theory. Appl. Mech. Lett, 1, 2011, pp. 58–61.
  3. Du, P. Zhang, Y. Zhou, S. Wu, J. Xu and G. Li, “Suppressions of gasoline-air mixture explosion by non-premixed nitrogen in a closed tunnel,” J. Loss Prev. Process. Ind, 31, 2014, pp. 113–120.
  4. Kosinski, “Numerical investigation of explosion suppression by inert particles in straight ducts,” J. Hazard Mater, 154, 2013, pp. 981–991.
  5. Babkin, A. Korzhavin and V. Bunev, “Propagation of premixed gaseous explosion flames in porous media,” Combust. Flame, 87, 1991, pp. 182–190.
  6. Trimis, F. Durst, “Combustion in a porous medium-advances and applications,” Combust. Sci. Technol, 121, 1996, 153–168.
  7. Mecke, D. Markus, C. Scholz, M. Thedens, H. Kim, F. Engelmann, A. Hilliger and U. Klausmeyer, “Examination of the flame transmission through porous structures,” Int. J. Transport Phenom, 10, 2008, pp. 245–253.
  8. Oliveira and M. Kaviany, “Nonequilibrium in the transport of heat and reactants in combustion in porous media,” Prog. Energy Combust. Sci, 27, 2001, 523–545.
  9. Dulger, E. Sher and F. Chemla, “Simulation of spark created turbulent flame development through numerical stochastic realizations,” Combustion Science and Technology, 100, 1994, pp. 141–162.
  10. H. Lu, O. Ezekoe, R. Greif and R. F. Sawyer, “Increased surface temperature effects on wall heat transfer during unsteady flame quenching,” in: Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, pp. 1465–1472, 1992.
  11. A. Daniel, “Flame quenching at the walls of an internal combustion engine,” in: Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, pp. 886–894, 1957.
  12. C. Alkidas, “Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions,” Progress in Energy and Combustion Science, 25, 1999, pp. 253–273.
  13. D. Goolsby and W. W. Haskell, “Flame-quenching distance measurements in CFR engine,” Combust. Flame, 26, 1976, pp. 105–114.
  14. L. Hackert, J. L. Ellzey and O. A. Ezekoye, “Effect of thermal boundary conditions on flame shape and quenching in ducts,” Combust. Flame, 112, 1998, pp. 73–84.
  15. Ezekoye, R. Geif and F. Sawyer, “Increased surface temperature effects on wall heat transfer during unsteady flame quenching,” Proc. Combust. Instit, 24, 1992, pp. 1465–1472.
  16. L. Berlad and A. E. Potter, “Prediction of the quenching effect of various surface geometries,” Proc. Combust. Instit, 5, 1955, pp. 728–735.
  17. R. Ferguson and J. C. Keck, “On laminar flame quenching and its application to spark ignition engines,” Combust. Flame, 28, 1977, pp. 197–205.
  18. E. Potter and A. L. Berlad, AL, A Thermal Equation for Flame Quenching.NASA TN 3398, 1955.
  19. R. Vosen, R. Greif and C. K. Westbrook, “Unsteady heat transfer during laminar flame quenching,” in: Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, pp. 75–83, 1984.
  20. Enomoto, “Side-wall quenching of laminar premixed flame propagating along the single wall surface,” Proceedings of the Combustion Institute, vol. 29, The Combustion Institute, Pittsburg, in press, 2002.
  21. J. Cleary and P. V. Farell, “Single-surface flame quenching distance, dependence on wall temperature, quenching geometry, and turbulence,” SAE Technical Paper, 950162, 1994, pp. 49–61.
  22. Boust, J. Sotton, S. A. Labuda and M. Bellenoue, “A thermal formulation for single-wall quenching of transient laminar flames,” Combust Flame,149, 2007, pp. 286-94.
  23. Bellenoue, T. Kageyama, S. A. Labuda, J. Sotton, “Direct measurement of laminar flame quenching distance in a closed vessel,” Exp Therm Fluid Sci, 27, 2003, pp. 323-31.
  24. T. Kim, D. H. Lee and S. Kwon, “Effects of thermal and chemical surface–flame interaction on flame quenching,” Combust Flame, 146, 2006, pp. 19-28.
  25. Fan., Y. Suzuki and N. Kasagi., “Quenching mechanism study of oscillating flame in micro channels using phase-locked OH-PLIF,” Proc. Combust. Inst., 33, No. 2, 2011, pp. 3267–3273.
  26. Baigmohammadi., O. Roussel and C. M. Dion, “A Numerical Study of Lean Propane-Air Flame Acceleration at the Early Stages of Burning in Cold and Hot Isothermal Walled Small-Size Tubes,” Flow, Turbulence and Combustion, 104, 2019, pp. 179–207.
  27. Baigmohammadi., S. Tabejamaat and M. Faghani-Lamraski, “Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propaneair premixed flame dynamics in non-adiabatic meso-scale reactors,” Energy, 121, 2017, pp. 657-675.
  28. Kolahdooz, M.H. Keyhani, M. Nazari and R. Ebrahimi, “Laboratory study on the propagation of methane-air premixed flame in a closed chamber in the presence of a porous barrier,” Journal of Amirkabir University Mechanics, 52, 2020, pp. 161-170.

29.  H. Moradi, F.  Sereshki, M. Ataei and M. Nazari, “Evaluation of the effect of moisture content of coal dust on prediction of coal dust explosion index,” Rudarsko-geološko-naftni zbornik, 48, 2020, pp. 45-67.

  1. Lai and N. Chakraborty, “Effects of Lewis Number on Head on Quenching of Turbulent Premixed Flames: A Direct Numerical Simulation Analysis,” Flow Turbulence Combust, 96, 2016, pp. 279-308.
  2. Xiao, Q. Wang, X. He, J. Sun and X. Shen, “Experimental study on the behaviors and shape changes of premixed hydrogen air flames propagating in horizontal duct,” international journal of hydrogen energy, 36, 2011, pp. 6325- 6336.
  3. Jin, Q. Duan, K.M. Liew, Z. Peng, L. Gong and J. Sun, “Experimental Study on a Comparison of Typical Premixed Combustible Gas-Air Flame Propagation in a Horizontal Rectangular Closed Duct,” Journal of Hazard and Material, 327, 2017, pp. 116–126.
  4. M. Ariff, J. S. Damazo, E. Kwon, W. L. Roberts and D. A. Lacoste, “Effect of propagation speed on the quenching of methane, propane and ethylene premixed flames between parallel flat plates,” Fuel, 256, 2019, pp. 115-125.