تحلیل و مدل‌سازی عملکرد دیگ بخار بازیافت حرارت با استفاده از سوخت‌های نوین (زیست‌توده) با رویکرد کاهش آلاینده‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود، دانشکده مهندسی مکانیک

2 دانشمده مهندسی مکانیک، دانشگاه صنعتی شاهرود

چکیده

در کار حاضر، عملکرد دیگ بخار بازیاب حرارت سه­ فشاره با گرمایش مجدد ازنظر توان سیکل، بازده و میزان آلایندگی آن در شرایط استفاده از سوخت گازی حاصل از زیست­­توده توسط عوامل اکسیداسیون اکسیژن، عامل هوا و همچنین بخار، به­ عنوان سوخت سیکل ترکیبی، بررسی شده­ اند. علاوه ­بر این، در شرایط استفاده از این سوخت پارامترهای طراحی آن، نظیر دمای پینچ فشاربالا تا فشارپایین، میزان بخار تولیدشده و فشار بخار مراحل فشاربالا تا فشارپایین دیگ بخار بازیاب و اختلاف دماهای بخار مافوق گرم تولیدشده با جریان گاز، با هدف کسب بیشینه توان و بازده سیکل، با استفاده از الگوریتم ژنتیک، بهینه­ سازی شده­ اند. مطابق نتایج، میزان توان و بازده بیشینه سیکل در استفاده از گاز تولیدی از زیست­­توده توسط عامل بخار نسبت­به عامل اکسیژن، به­ طور میانگین، 117 مگاوات و 24/3% افزایش را نشان می­ دهد. اما، میزان NOx موجود در گازهای حاصل از احتراق گاز تولیدی از زیست­­توده توسط عامل اکسیژن نسبت­ به عامل بخار 790 گرم بر ثانیه کاهش می­ یابد. درانتها نیز، مقایسه­ ای میان سوخت مشتق زباله و گاز طبیعی، ازنظر توان، بازده سیکل و میزان آلایندگی، صورت گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis and modeling of heat recovery boiler with using of new fuels (biomass) with view point of pollution reduction

نویسندگان [English]

  • Mahmood Chahartaghi 1
  • Soroosh Kalati Hesari 2
1 Faculty of Mechanical Engineering, Shahrood University of Technology
2 Shahrood University of Technology
چکیده [English]

In this paper, the performance of a triple pressure heat recovery boiler with gaseous fuels from biomass is discussed in terms of power output, efficiency and pollutions at oxygen, air, and steam gasification processes. The main parameters to optimization of heat recovery boiler by using genetic algorithm method are water and steam mass flow rates, high to low pressure pinch points temperatures, and temperature difference between the superheat steam and gas flows. It was found that the use of steam gasification in comparison with oxygen gasification increases the power output and efficiency of cycle 117 MW and 3.24%, respectively. However, the NOx production in oxygen gasification process is 790 gr/s less than steam gasification. Also different types of biomasses are compared in terms of power generation, efficiency and emissions production with each othe.
In this paper, the performance of a triple pressure heat recovery boiler with gaseous fuels from biomass is discussed in terms of power output, efficiency and pollutions at oxygen, air, and steam gasification processes. The main parameters to optimization of heat recovery boiler by using genetic algorithm method are water and steam mass flow rates, high to low pressure pinch points temperatures, and temperature difference between the superheat steam and gas flows. It was found that the use of steam gasification in comparison with oxygen gasification increases the power output and efficiency of cycle 117 MW and 3.24%, respectively. However, the NOx production in oxygen gasification process is 790 gr/s less than steam gasification. Also different types of biomasses are compared in terms of power generation, efficiency and emissions production with each othe.
 
 
 

کلیدواژه‌ها [English]

  • Heat recovery boiler
  • gasification
  • Biomass
  • Combustion pollutants
  1. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain and S. Mekhilef, “A review on biomass as a fuel for boilers,” Renewable and Sustainable Energy Reviews, 15, 2011, pp. 2262-2289.
  2. Sasaki , W. Knorr, D. R. Foster, H. Etoh, H. Ninomiya and S. Chay, “Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020,” Appl Energy, 86, 2009, pp. 140-150.
  3. S. Sikarwar, G. D.Surywanshi, V. S. Patnaikuni, M. Kakunuri and R. Vooradi, “Chemical looping combustion integrated Organic Rankine Cycled biomass-fired power plant – Energy and exergy analyses,” Renewable Energy, 155, 2020, pp. 931-949.
  4. Onsree and N. Tippayawong, Analysis of reaction kinetics for torrefaction of pelletized agriculturalbiomass with dry flue gas, Energy Reports, 6, 2020, pp. 61-65.
  5. C. Caputo, M. Palumbo, P. C. Pelagagge and F. Scacchia, “Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables,” Biomass Bioenergy, 28, 2005, pp. 35-51.
  6. Faaij, “Modern biomass conversion technology,” Mitig Adapt Strat Global Change, 11, pp. 343-375, 2006.
  7. Balat, E. Kirtay and H. Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals,” Energy Convers Manage, 50, 2009. pp. 3147-3157.
  8. Valdes and J.L. Rapun,  ”Optimization of heat recovery steam generators for combinedcycle gas turbine power,” Applied Thermal Engineering, 21, 2001, pp. 1149-1159.
  9. Dua, L. Jinbo and Y. Baoqiang, “Dynamic characteristics analysis of a once-through heat recovery steam generator,” Applied Thermal Engineering, 173, 2020, 115155.
  10. Rezaie, G. Tsatsaronis and U. Hellwig, “Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm,” Energy, 168, 2019. pp. 346-357.
  11. Ahmadi and I. Dincer, “Thermodynamic analysis and thermoeconomic optimization of a dual pressure combined cycle power plant with a supplementary firing unit,” Energy Conversion and Management, 52, 2011, pp. 2296-2308.
  12. M. Bassily, “Enhancing the efficiency and power of the triple pressure reheat combined cycle by means of gas reheat, gas recuperation and reduction of the irreversibility in the heat recovery steam generator,” Applied Energy, 85, 2008, pp. 1141-1162.
  13. Alus and M. Petrovicm, “Optimization of of the triple-pressure combined cycle power plant,” Thermal science, 16, 2012, pp. 901-914.
  14. Saifullah and et al., “Analysis of power from palm oil solid waste for biomass power plants: A case study in Aceh Province,” Chemosphere, 253, 2020, 126714.
  15. Amirante, S. Bruno, E. Distaso, M. La Scala and P. Tamburrano, “A biomass small-scale externally fired combined cycle plant for heat and power generation in rural communities,” Renewable Energy Focus, 28, 2019, pp. 36-46.
  16. Yari, N. Kousheshi and A. Saberimehr, “Effect of the composition of syngas derived from biomass gasification on performance and emission characteristic of a diesel-syngas RCCI engine,” Fuel and Combustion, 12, No. 4, 2019, pp. 77-95. (in Persian)
  17. Bahari, K. Atashkari and J. Kmahmoudimehr, “Numerical simulation and optimum operational point determination of a downdraft gasfier regarding pollutant emissions,” Modares Mechanical Engineering, 18, No. 6, pp. 69-78. (in Persian)
  18. Xiang, L. Cai and et al., “Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures,” Energy, 179, 2019, pp. 571-580.
  19. Parthasarathy and K. Sheeba Narayanan, “Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield e A review,” Renewable Energy, 2014, pp. 570-579.
  20. Herguido, J. Corella and J. Gonzalez-Saiz, “Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale,” Industrial & Engineering Chemistry Research, 31, 1992, pp. 1274-1282.
  21. Jenkins, L. Baxter, T. Miles, Jr. and T. Miles, “Combustion Properties of Biomass,” Fuel Processing Technology, 54, 1998, pp. 17-46,
  22. Nikbakht Naserabad., A. Mehrpanahi, G. Ahmadi., “Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications,” Energy, 159, 2018, pp. 277-293.
  23. R. Strehlow, Combustion fundamentals, McGraw-Hill, international Editions, New York, USA, 1984.
  24. IAPWS 97, International Association for Properties of Water and Steam 97.
  25. L. Haupt and S. L. Haupt, Practical Genetic Algorithms, John Wiley and Sons, New York, USA, 1998.
  26. Galvagno, S. Casu, G. Casciaro, M. Martino, A. Russo and S. Portofino, “Steam Gasification of Refuse-Derived Fuel (RDF): Influence of Process Temperature on Yield and Product Composition,” Energy & Fuels, 20, 2006, pp. 2284-2288.