مطالعه عددی دینامیک فرایند اختلاط گذربحرانی در انژکتورهای هم‌محور برشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف

2 دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

یک پژوهش عددی، به­ منظور شناسایی و ارزیابی مشخصه‌های پاشش و اختلاط کرایوژنیکی یک انژکتور هم‌محور برشی واقعی، در شرایط گذربحرانی انجام شده است. بدین­ منظور، از مدل زیرشبکه‌ای گردابه-لزجتی دینامیکی (برای شبیه‌سازی گردابه‌های بزرگ)، معادله حالت پنگ-رابینسون (برای محاسبه خواص ترمودینامیکی)، پایگاه داده NIST (برای تخمین خواص انتقالی سیال کرایوژنیکی) و الگوریتم PISO (برای کوپلینگ سرعت و فشار در حلگر جریان) برای تحلیل ویژگی‌های متعدد جریان برشی هم‌محور آشفته در شرایط گذربحرانی استفاده شده است. همچنین، از نتایج مطالعات تجربی و عددی پیشین برای اعتبارسنجی نتایج عددی پژوهش حاضر استفاده شده که تطابق خوبی بین این نتایج مشاهده می‌شود. در این پژوهش، ضمن آنکه برای نخستین ­بار دینامیک فرایند اختلاط در یک انژکتور هم‌محور برشی واقعی در شرایط گذربحرانی بررسی شده است، با تحلیل کمی و کیفی میدان جریان ورتیکال، فرایند اختلاط بررسی شده است. نتایج این مطالعه نشان می‌دهد که به­ علت اثرات قابل‌توجه پدیده‌های شبه‌جوشش و لایه‌بندی چگالی در ممانعت از رشد پایدار لایه اختلاطی مربوط به جت گذربحرانی، هسته پتانسیلی جت چگال داخلی بسیار بزرگ‌تر از هسته پتانسیلی جت خارجی است. با ‌وجود این، به­ لطف حساسیت بسیار زیاد ظرفیت گرمایی ویژه به تغییرات دما (در حوالی دمای شبه‌جوشش)، نوسانات ناچیز دما قادر به کاهش شدید مقادیر ظرفیت گرمایی ویژه و درنتیجه شکست موضعی لایه محافظ حرارتی می‌شود که به­ نوبه خود امکان عملکرد موثر سازوکارهای مولد ورتیسیته و درنتیجه بهبود کیفیت فرایند اختلاط را به­ وجود می‌آورد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Investigation of Transcritical Mixing Dynamics of Bi-shear Injectors

نویسندگان [English]

  • محمد فرشچی 1
  • Ata Poormahmood 2
1
2 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran.
چکیده [English]

A numerical study has been performed to evaluate the cryogenic injection and mixing characteristics of a real transcritical bi-shear injector. With this aim, a dynamic one-equation eddy-viscosity subgrid-scale model (for large eddy simulation), the Peng-Robinson equation of state (for calculating the thermodynamic properties), the NIST database (for estimating the transport properties) and the PISO algorithm (for velocity-pressure coupling) have been used to analyze various features of the transcritical turbulent bi-shear flow. Observations indicate that there is a good agreement between the results of the present work and previous experimental and numerical studies. Simulations show that due to the remarkable effects of pseudo-boiling and density stratification phenomena in preventing the sustained growth of the transcritical mixing layer, the potential core of the inner dense jet is much longer than that of the outer jet. However, due to the high sensitivity of isobaric specific heat to temperature, especially around the pseudo-boiling temperature, small temperature fluctuations drastically reduce the isobaric specific heat and in turn result in local distortion and weakening of the thermal shield. Subsequently, the vorticity generating mechanisms, including the baroclinic torque and volume dilatation, catch up and efficiently enhance the mixing quality.
.

کلیدواژه‌ها [English]

  • Coaxial shear injector
  • Cryogenic injection and mixing
  • Transcritical condition
  • Density stratification
  • Mixing layer
  1. Yang, M. Habiballah, J. Hulka and M. Popp, Liquid Rocket Thrust Chambers. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2004.
  2. Bellan, High-Pressure Flows for Propulsion Applications. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2020.
  3. Mayer, B. Ivancic, A. Schik and U. Hornung, “Propellant atomization in LOX/GH2 rocket engines,” 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 1998.
  4. Mayer, A. Schik, M. Schäffler and H. Tamura, “Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors,” J. Propuls. Power, 16, No. 5, 2000, pp. 823–828.
  5. Mayer, A. Schik, C. Schweitzer and M. Schäffler, “Injection and mixing processes in high pressure LOX/GH2 rocket combustors,” 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, USA, 1996.
  6. Decker, A. Schik, U. E. Meier and W. Stricker, “Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets,” Appl. Opt., 37, No. 24, 1998, pp. 5620–5627.
  7. Roy, C. Segal and C. Joly, “Spreading Angle and Core Length Analysis of Supercritical Jets,” AIAA J., 51, No. 8, 2013, pp. 2009–2014.
  8. Roy and C. Segal, “Experimental Study of Fluid Jet Mixing at Supercritical Conditions,” J. Propuls. Power, 26, No. 6, 2010, pp. 1205–1211.
  9. W. Davis and B. Chehroudi, “Measurements in an Acoustically Driven Coaxial Jet under Sub-, Near-, and Supercritical Conditions,” J. Propuls. Power, 23, No. 2, 2007, pp. 364–374.
  10. Tani, S. Teramoto and K. Okamoto, “High-speed observations of cryogenic single and coaxial jets under subcritical and transcritical conditions,” Exp. Fluids, 56, No. 4, 2015, pp. 56–85.
  11. Kim, Y. Kim and S.-K. Kim, “Numerical study of cryogenic liquid nitrogen jets at supercritical pressures,” J. Supercrit. Fluids, 56, No. 2, 2011, pp. 152–163.
  12. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., 27, No. 6, 1972, pp. 1197–1203.
  13. Y. Peng and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 15, No. 1, 1976, pp. 59–64.
  14. H. Chung, M. Ajlan, L. L. Lee and K. E. Starling, “Generalized multiparameter correlation for nonpolar and polar fluid transport properties,” Ind. Eng. Chem. Res., 27, No. 4, 1988, pp. 671–679.
  15. Zong, H. Meng, S. Y. Hsieh and V. Yang, “A numerical study of cryogenic fluid injection and mixing under supercritical conditions,” Phys. Fluids, 16, No. 12, 2004, pp. 4248–4261.
  16. Zong and V. Yang, “Cryogenic fluid jets and mixing layers in transcritical and supercritical environments,” Combust. Sci. Technol., 178, No. 1–3, 2006, pp. 193–227.
  17. Yang, “Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems,” Proc. Combust. Inst., 28, No. 1, 2000, pp. 925–942.
  18. Bellan, “Theory, modeling and analysis of turbulent supercritical mixing,” Combust. Sci. Technol., 178, No. 1–3, 2006, pp. 253–281.
  19. Bellan, “Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays,” Prog. Energy Combust. Sci., 26, No. 4, 2000, pp. 329–366.
  20. A. Okong’o and J. Bellan, “Direct numerical simulation of a transitional supercritical binary mixing layer: Heptane and nitrogen,” J. Fluid Mech., 464, 2002, pp. 1–34.
  21. Okong’o and J. Bellan, “Real-Gas Effects on Mean Flow and Temporal Stability of Binary-Species Mixing Layers,” AIAA J., 41, No. 12, 2003, pp. 2429–2443.
  22. Okong’o and J. Bellan, “Turbulence and fluid-front area production in binary-species, supercritical, transitional mixing layers,” Phys. Fluids, 16, No. 5, 2004, pp. 1467–1492.
  23. E. Lapenna and F. Creta, “Mixing under transcritical conditions: An a-priori study using direct numerical simulation,” J. Supercrit. Fluids, 128, 2017, pp. 263–278.
  24. E. Lapenna, “Characterization of pseudo-boiling in a transcritical nitrogen jet,” Phys. Fluids, 30, No. 7, 2018, p. 077106.
  25. E. Lapenna and F. Creta, “Direct Numerical Simulation of Transcritical Jets at Moderate Reynolds Number,” AIAA J., 57, No. 6, 2019, pp. 2254–2263.
  26. Lagarza-Cortés, J. Ramírez-Cruz, M. Salinas-Vázquez, W. Vicente-Rodríguez and J. M. Cubos-Ramírez, “Large-eddy simulation of transcritical and supercritical jets immersed in a quiescent environment,” Phys. Fluids, 31, No. 2, 2019, p. 025104.
  27. Chehroudi, D. Talley and E. Coy, “Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures,” Phys. Fluids, 14, No. 2, 2002, pp. 850–861.
  28. Chehroudi, “Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications,” Int. J. Aerosp. Eng., Vol. 2012, 2012, pp. 1–31.
  29. Poormahmood, M. Shahsavari and M. Farshchi, “Numerical Study of Cryogenic Swirl Injection under Supercritical Conditions,” J. Propuls. Power, 34, No. 2, 2018, pp. 428–437.
  30. Wang, H. Huo, Y. Wang and V. Yang, “Comprehensive Study of Cryogenic Fluid Dynamics of Swirl Injectors at Supercritical Conditions,” AIAA J., 55, No. 9, 2017, pp. 3109–3119.
  31. Wang, Y. Wang and V. Yang, “Geometric Effects on Liquid Oxygen/Kerosene Bi-Swirl Injector Flow Dynamics at Supercritical Conditions,” AIAA J., 55, No. 10, 2017, pp. 3467–3475.
  32. Wang and V. Yang, “Supercritical Mixing and Combustion of Liquid-Oxygen/ Kerosene Bi-Swirl Injectors,” J. Propuls. Power, 33, No. 2, 2017, pp. 316–322.
  33. Zhang, X. Wang, Y. Li, S.-T. Yeh and V. Yang, “Supercritical fluid flow dynamics and mixing in gas-centered liquid-swirl coaxial injectors,” Phys. Fluids, 30, No. 7, 2018, pp. 075106.
  34. Blazek, Computational Fluid Dynamics: Principles and Applications, 3rd Edition, Sankt Augustin, Elsevier, 2005.
  35. Pope, Turbulent Flows, 1st Edition, Cambridge, Cambridge University Press, 2000.
  36. W. Kim and S. Menon, “A new dynamic one-equation subgrid-scale model for large eddy simulations,” 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1995, pp. 1–9.
  37. Germano, U. Piomelli, P. Moin and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids, 3, No. 7, 1991, pp. 1760–1765.
  38. J. Linstrom and W. G. Mallard, NIST chemistry webbook; NIST standard reference database number 69, National Institute of Standards and Technology, 2011.
  39. Tennekes and J. L. Lumley, A First course in turbulence, Cambridge, The MIT Press, 1972.
  40. Hosangadi, F. Technology, S. Arunajatesan and S. N. Laboratories, "Three-Dimensional Hybrid RANS/LES Simulations of a Supercritical Liquid Nitrogen Jet," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008.
  41. E. Dimotakis, “The mixing transition in turbulent flows,” J. Fluid Mech., 409, 2000, pp. 69–98.
  42. I. Shrira, V. V. Voronovich, and I. A. Sazonov, “Mixing in coaxial jets,” J. Fluid Mech., 425, 2000, pp. 161–185.
  43. Rehab, E. Villermaux and E. J. Hopfinger, “Flow regimes of large-velocity-ratio coaxial jets,” J. Fluid Mech., 345, 1997, pp. 357–381.
  44. N. Abramovich, The Theory of Turbulent Jets, Cambridge, The MIT Press, 1963.
  45. Singla, P. Scouflaire, C. Rolon and S. Candel, “Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames,” Combust. Flame, 144, No. 1–2, 2006, pp. 151–169.
  46. Kendrick, G. Herding, P. Scouflaire, C. Rolon and P. Candel, “Effects of a recess on cryogenic flame stabilization,” Combust. Flame, 118, No. 3, 1999, pp. 327–339.
  47. Cho, G. Park, Y. Chung, Y. Yoon and V. G. Bazarov, “Surface instability on cryogenic swirl flow at sub- to supercritical conditions,” J. Propuls. Power, 30, No. 4, 2014, pp. 1038–1046.
  48. M. Ruiz, G. Lacaze and J. C. Oefelein, “Flow topologies and turbulence scales in a jet-in-cross-flow,” Phys. Fluids, 27, No. 4, 2015, pp. 1–36.
  49. Bonelli, A. Viggiano and V. Magi, “How does a high density ratio affect the near- and intermediate-field of high-Re hydrogen jets?,” Int. J. Hydrogen Energy, 41, No. 33, 2016, pp. 15007–15025.
  50. M. Rogers and R. D. Moser, “The three-dimensional evolution of a plane mixing layer: The Kelvin-Helmholtz rollup,” J. Fluid Mech., 243, No. 1992, 1992, pp. 183–226.
  51. Fontane, and L. Joly, “The stability of the variable-density Kelvin–Helmholtz billow,” J. Fluid Mech., 612, 2008, pp. 237–260.
  52. A. Hannoun, H. J. S. Fernando and E. J. List, “Turbulence structure near a sharp density interface,” J. Fluid Mech., 189, 1988, pp. 189–209.
  53. Okong’o and J. Bellan, “Entropy production of emerging turbulent scales in a temporal supercritical n-heptane/nitrogen three-dimensional mixing layer,” Proc. Combust. Inst., 28, No. 1, 2000, pp. 497–504.
  54. T. Banuti and K. Hannemann, “The absence of a dense potential core in supercritical injection: A thermal break-up mechanism,” Phys. Fluids, 28, No. 3, 2016, p. 035103.
  55. Poormahmood and M. Farshchi, “Numerical study of the mixing dynamics of trans- and supercritical coaxial jets,” Phys. Fluids, 32, No. 1, 2020, p. 125105.
  56. Müller, C. A. Niedermeier, J. Matheis, M. Pfitzner and S. Hickel, “Large-eddy simulation of nitrogen injection at trans- and supercritical conditions,” Phys. Fluids, 28, no. 1, 2016, p. 015102.
  57. M. Ruiz, G. Lacaze, J. C. Oefelein, R. Mari, B. Cuenot, L. Selle and T. Poinsot, “Numerical benchmark for high-reynolds-number supercritical flows with large density gradients,” AIAA J., 54, No. 5, 2016, pp. 1445–1460.
  58. Tian, Y. Gao, X. Dong and C. Liu, “Definitions of vortex vector and vortex,” J. Fluid Mech., 849, 2018, pp. 312–339.
  59. Tian, H. Fu, J. Xia and Y. Yang, “A vortex identification method based on local fluid rotation,” Phys. Fluids, 32, No. 1, 2020, p. 015104.
  60. Chassaing, R. A. Antonia, F. Anselmet, L. Joly and S. Sarkar, Variable Density Fluid Turbulence: Preamble, Netherlands, Springer, 2002.
  61. S. Sorensen, Dynamics and Instability of Fluid Interfaces, Berlin, Springer, 1979.