مکانیزم‌های حاکم بر گذار از شعله به تراک در مخلوط غیرهمگن هیدروژن-هوا: مطالعه‌ای بر تاثیر نسبت انسداد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک- دانشکده مهندسی- دانشگاه بیرجند- بیرجند- ایران

2 هیات علمی دانشگاه آزاد اسلامی واحد نجف آباد

چکیده

هدف از این مقاله بررسی عددی تاثیر نسبت انسداد بر مکانیزم‌های حاکم بر فرایند گذار از شعله به تراک (DDT) در مخلوط غیرهمگن هیدروژن-هواست. محفظه مورد بررسی یک کانال مستطیلی بسته‌ مانع‌دار است که در سه نسبت انسداد 30،10 و 60 درصد و در فواصل موانع متفاوت مورد مطالعه قرار گرفته است. شبیه‌سازی عددی حاضر به­ کمک مدل اغتشاشی SST-K-ω و مدل احتراقی چین‌خوردگی سطح شعله ولر انجام گرفته و از روش HLLC برای تسخیر موج ضربه‌ای استفاده شده است. نتایج حاضر نشان می‌دهد که برای نسبت انسداد 10 درصد گذار به تراک در قسمت بدون مانع کانال و برای نسبت‌های انسداد 30 و 60 درصد در قسمت مانع‌دار کانال رخ داده است. با تغییر نسبت انسداد و فاصله موانع مکانیزم‌های حاکم بر فرایند DDT تغییر می‌کنند. انعکاس ماخ از دیواره پایینی کانال و شکل‌گیری ساقه‌ ماخ واکنشی، انعکاس ساقه‌ ماخ از دیواره موانع پایینی و انعکاس موج ضربه‌ای برخوردی از دیواره موانع بالایی از مهم‌ترین مکانیزم‌های حاکم مشاهده شده­اند. نتایج حاضر نشان داده‌اند که با افزایش نسبت انسداد، شتاب‌گیری شعله و وقوع DDT در کانال سریع‌تر اتفاق می‌افتد. سریع‌ترین حالت آغازش تراک در نسبت انسداد 60 درصد و نسبت فاصله به ارتفاع S/H=2.5 رخ داده است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanisms governing the deflagration to detonation transition in inhomogeneous mixtures of H2-air; A study on the effect of blockage ratio

نویسندگان [English]

  • Mohammad Hosein Shamsadin Saeid 1
  • Javad Khadem 1
  • SOBHAN EMAMI 2
1 Mechanical Eng, University of Birjand, Birjand, Iran
2 هیات علمی دانشگاه آزاد اسلامی واحد نجف آباد
چکیده [English]

This paper aims to numerically investigate the effect of blockage ratio on the mechanisms governing the deflagration to detonation transition (DDT) in inhomogeneous mixtures of H2-air. The study combustion chamber is a closed rectangular cross-section channel with obstacles that have been studied in three blockage ratios of 10, 30, and 60 percent and at different obstacle spacing. The present numerical simulation was performed using the SST-K-ω turbulence model and the combustion model of the Weller flame wrinkling and the HLLC method was used to shock-capturing. The results show that for the 10% blockage ratio, the onset of detonation occurred in the unobstructed part of the channel and for the blockage ratios of 30% and 60% DDT occurred in the obstructed section of the channel. The mechanisms governing the DDT process change as the blockage ratio and obstacle spacing change. The Mach reflection from the lower wall of the channel and the formation of the reactive Mach stem, the reflection of the Mach stem from the wall of the lower obstacles, and the reflection of incident shock from the wall of the upper obstacles are the most important governing mechanisms observed. The results also show that flame acceleration and the occurrence of DDT in the channel occur faster as the blockage ratio increases. The fastest onset of detonation occurred at the blockage ratio of 60% and the space to height ratio of S/H = 2.5.
 
.

کلیدواژه‌ها [English]

  • Deflagration-to-detonation transition
  • Inhomogeneous mixture
  • Reactive Mach stem
  • Blockage ratio
  1. Wang, Z. Wang and et al, “Study on a simplified double-frequency scheme for pulse detonation rocket engines”, Acta Astronautica, 148, 2018, pp. 337–344.
  2. N. Smirnov, O. G. Penyazkov and et al, “Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber”, Acta Astronautica, 149, 2018, pp. 77–92.
  3. G. Phylippov, V. R. Dushin and et al, “Fluid mechanics of pulse detonation thrusters”, Acta Astronautica, 76, 2012, pp. 115–126.
  4. A. Liberman, M. F. lvanov and et al, “Deflagration-to-detonation transition in highly reactive combustible mixtures”, Acta Astronautica, 67, 2010, pp. 688–701.
  5. Zhang, L. Pang and Y. Gao, “Detonation limits in binary fuel blends of methane/hydrogen mixtures”, Fuel, 168, 2016, pp. 27–33.
  6. Ciccarelli and S. Dorofeev, “Flame acceleration and transition to detonation in ducts”, Progress in Energy and Combustion Science, 34, 2008, pp. 499-550.
  7. N. Smirnov, V. F. Nikitin and S. Alyari Shurekhdeli, “Investigation of self-sustaining waves in metastable systems: deflagration-to-detonation transition”, Journal of Propulsion and Power, 25, 2009, pp. 593-608.
  8. N. Smirnov, V. F. Nikitin and Yu. G. Phylippov, “Deflagration to detonation transition in gases in tubes with cavities”, Journal of Engineering Physics and Thermophysics, 83, 2010, pp. 1287-1316.

9.     N. N. Smirnov, V. F. Nikitin, J. Khadem and Sh. Alyari-Shourekhdeli, “Onset of detonation in poly dispersed fuel–air mixtures”, Proceedings of the Combustion Institute, 31. No. 2, 2007, pp. 2195-2204

  1. N. Smirnov, V .F.Nikitin, V. R.Dushin, Y. Filippov, V. Nerchenko and J. Khadem, “Combustion onset in non-uniform dispersed mixtures”, Acta Astronautica, 115, 2015, pp. 94–101
  2. Emami, K. Mazaheri, A. Shamooni and Y. Mahmoudi, “LES of flame acceleration and DDT in hydrogen-air mixture using artificially thickened flame approach and detailed chemical kinetics”, Hydrogen Energy, 40, 2015, pp. 7395-7408.
  3. H. S. Lee, “Initiation of gaseous detonation”, Annual Review of Physical Chemistry, 28. No. 1, 1977, pp. 75–104.
  4. Teodorczyk, “Scale effects on hydrogen–air fast deflagrations and detonations in small obstructed channels”, Journal of Loss Prevention in the Process Industries, 21, No. 2, 2008, pp. 147–153.
  5. M. Frolov, “Acceleration of the deflagration-to-detonation transition in gases: from Shchelkin to our days”, Combustion Explosion Shock Waves, 48, No. 3, 2012, pp. 258–268.
  6. N. Gamezo, T. Ogawa and E. S. Oran, “Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture”, Proceedings of the Combustion Institute, 31. No. 2, 2007, pp. 2463–2471.
  7. A. Kessler, V. N. Gamezo and E. S. Oran, “Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems”, Combustion and Flame, 157, 2010, pp.2063–2077.
  8. Na’Inna, H. Phylaktou and G. Andrews, “Effects of obstacle separation distance on gas explosions: the influence of obstacle blockage ratio”, Procedia Engineering, 2014, 84, pp. 306–319.
  9. Ciccarelli, C. Fowler and M. Bardon, “Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube”, Shock Waves, 161, 2005, pp. 161–166.
  10. Ni, J. Pan, Y. Zhu, C. Jiang, J. Li and E. K. Quaye, “Effect of arc obstacles blockage ratio on detonation characteristics of hydrogen-air”, Acta Astronautica, 170, 2020, pp.188-197.
  11. G. Vollmer, F. Ettner and T. Sattelmayer, “Deflagration to detonation transition in hydrogen/air mixtures with a concentration gradient”, Combustion Science and Technology, 184, 2012, pp. 1903–1915.
  12. B. Dorofeev, V. P. Sidorov, M. S. Kuznetsov, I. D. Matsukov and V. I. Alekseev, “Effect of scale on the onset of detonations”, Shock Waves, 10, 2000, pp. 137–149.
  13. R. Boeck, J. Hasslberger and T. Sattelmayer, “Flame acceleration in hydrogen/air mixtures with concentration gradients”, Combustion Science and Technology, 186, 2014, pp. 1650-1661.
  14. R. Boeck, J. Hasslberger, F. Ettner and T. Sattelmayer, “Investigation of peak pressures during explosive combustion of inhomogeneous hydrogen-air mixtures”, in Proceedings of the 7th International Fire and Explosion Hazards Seminar, Providence, RI, USA, 2013.
  15. J. Wang and J. X. Wen, “Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients”, International Journal of Hydrogen Energy, 42, No. 11, 2016, pp. 7657-7663.
  16. Karanam, P. K. Sharma and S. Ganju, “Numerical simulation and validation of flame acceleration and DDT in hydrogen air mixtures”, International Journal of Hydrogen Energy, 43, 2018, pp.17492-17504.
  17. Karanam, S. Ganju and J. Chattopadhyay, “TimeScale Analysis, analysis, numerical simulation and validation of flame acceleration, and DDT in hydrogen–air mixtures”, Combustion Science and Technology, DOI: 10.1080/00102202.2020.1732363, 2020, pp. 1-24.
  18. Khodadadi Azadboni, J. X. Wen, A. Heidari, S. P. R. Muppala and C. J. Wang, “Numerical modeling of deflagration to detonation transition in inhomogeneous hydrogen/air mixtures”, Journal of Loss Prevention in the Process Industries, 49, 2017, pp. 722-730.
  19. Khodadadi Azadboni, A. Heidari and J. X. Wen, “Numerical studies of flame acceleration and onset of detonation in homogenous and inhomogeneous mixture”, Journal of Loss Prevention in the Process Industries, 64, 2020, pp. 104063
  20. Soleimanpour and H. Nemati, “Numerical investigation of deflagration to detonation transition in closed ducts under various working conditions”, Acta Astronautica, 162, 2019, pp. 109–120.
  21. Khodadadi Azadboni, A. Heidari, L. R. Boeck and J. X. Wen, “The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions a numerical study”, International Journal of Hydrogen Energy, 43, 2019, pp. 7032-7040.
  22. S. Oran, G. Chamberlain and A. Pekalski, “Mechanisms and occurrence of detonations in vapor cloud explosions”, Progress in Energy and Combustion Science, 77, 2020, 100804, pp. 1-37.
  23. B. Goodwin, R. W Houim and E. S. Oran, “Effect of decreasing blockage ratio on DDT in small channels with obstacles”, Combustion and Flame, 173, 2019, pp. 16–26.
  24. B. Goodwin, R. W Houim, E. S. Oran, “Shock transition to detonation in channels with obstacles”, Proceedings of the Combustion Institute, 36, No. 2, 2017, pp. 2717–2724.
  25. H. S. Saeid, J. Khadem and S. Emami, "Numerical investigation of the mechanism behind the deflagration to detonation transition in homogeneous and inhomogeneous mixtures of H2-air in an obstructed channel", International Journal of Hydrogen Energy, 46, No. 41, 2021, pp. 21657-21671.
  26. Ettner, K. G. Vollmer and T. Sattelmayer, “Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures”, Journal of Combustion, Article ID 686347, 2014, pp. 1-15.
  27. Chen, N. Zhao, X. Jia, S. Liu, H. Zheng and Z. Li, “Numerical investigation on detonation initiation using toroidal shock wave focusing", Aerospace Science and Technology, 92, 2019, pp. 300-313.
  28. Olcucuoglu and B. H. Saracoglu, “preliminary heat transfer analysis of pulse detonation engines”, Transportation Research Procedia, 29, 2018, pp. 279-288.
  29. Veynante and L. Vervisch, “Turbulent combustion modeling”, Progress in Energy and Combustion Science, 28, 2002, pp. 193-266.
  30. G. Weller, G. Tabor, A. D. Gosman and C. Fureby, “Application of a flame-wrinkling LES combustion model to a turbulent mixing layer,” Proceeding of the Combustion Institute, 27, 1998, pp. 899–907.
  31. O Conaire, H. J. Curran, J. M. Simmie, W. J. Pitz and C. K. Westbrook, “A comprehensive modeling study of hydrogen oxidation”, International Journal of Chemical Kinetics, 36, No. 11, 2004, pp. 603–622.

41.  F. Ornano, J. Braun and B. H. Saracogl, “Multi-stage nozzle-shape optimization for pulsed hydrogen–air detonation combustor”, Advances in Mechanical Engineering, 9, No. 2, 2017, pp. 1-9. 

  1. F. Toro, M. Spruce and W. Speares, “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4, No. 1, 1994, pp. 25–34.
  2. Ettner and T. Sattelmayer, Effiziente numerische Simulation des Deflagrations-Detonations- Ubergangs, PhD thesis, Technical University of Munich, Department of Mechanical Engineering, 2013. (in German)
  3. Emami and K. Mazaheri, "Numerical investigation of the effects of blockage ratio and obstruction geometry on flame acceleration and overpressure of gas explosion", Journal of Fuel and Combustion, 5, 2013, pp.1-24. (in Persian)
  4. Kuznetsov, I. Matsukov, V. Alekseev, W. Breitung and S. Dorofeev, "Effect of boundary layer on flame acceleration and DDT", Proceedings of 20th international colloquium on the dynamics of explosions and reactive systems (ICDERS), Montreal, Canada, 2005.
  5. Kuznetsov, V. Alekseev, I. Matsukov and S. Dorofeev, "DDT in a smooth tube filled with a hydrogen–oxygen mixture", Shock Waves, 14, No. 3, 2005, pp. 205–215.
  6. Han, Y. Gao and C. K. Law, "Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: An integrated mechanistic study", Combustion Flame, 176, 2017, pp. 285–298.
  7. N. Gamezo, A. M. Khokhlov and E. S. Oran, "The influence of shock bifurcations on shock-flame interactions and DDT", Combustion Flame, 126, 2001, pp. 1810–1826.
  8. N. Gamezo, T. Ogawa and E. S. Oran, “Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing”, Combustion and Flame, 155, 2008, pp. 302-315.