پیرولیز ضایعات لیگنوسلولزی گیاه نی (Arundo donax) در یک راکتور بستر ثابت تحت اتمسفر دی اکسیدکربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک بیوسیستم دانشگاه شهرکرد

2 دانشجوی دکتری صنایع سلولزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

3 کارشناس ارشد مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

4 دانشیار گروه مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

5 دانشجوی کارشناسی ارشد محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

چکیده

این تحقیق با هدف بررسی پیرولیز گیاه نی در یک راکتور بستر ثابت تحت اتمسفر CO2 انجام شده است. آزمایشات پیرولیز شامل بررسی تأثیر درجه حرارت (540، 650 و 750 درجه سانتی‌گراد) بر بازده محصولات پیرولیز می‌باشد. بعد از عملیات پیرولیز، آنالیز تقریبی و نهایی ویژگی‌های نفت زیستی بررسی شد. نتایج نشان داد حداکثر بازده نفت زیستی (7/33 درصد) در درجه حرارت 650 درجه سانتی‌گراد به دست آمد. با افزایش درجه حرارت از 540 به 650 درجه سانتی‌گراد، بازده نفت زیستی افزایش و از مقدار زغال زیستی کاسته می‌شود. در خصوص اثر افزایش درجه حرارت بر مقدار گاز، نتایج بیانگر این است که از حرارت 540 تا 650 درجه سانت‌گراد مقدار گاز افزایش و سپس کاهش می‌یابد. نتایج کروماتوگرافی گازی- طیف سنجی جرمی (GC/MS) نشان داد مایع اسیدی به دست آمده به رنگ قهوه‌ای تیره مخلوطی از ترکیبات شیمیایی شامل اسیدها، الکل‌ها، آلدهیدها، فورفورال‌ها، فوران‌ها، فنل‌ها و برخی از مواد آروماتیک است. وجود این ترکیبات نشان می‌دهد که نفت زیستی به دست آمده به طور بالقوه می‌تواند به عنوان سوخت مورد استفاده قرار گیرد. همچنین فرمول تجربی نفت زیستی به دست آمده CH1.44O0.54N0.003 و با ارزش حرارتی 64/27 مگاژول بر کیلوگرم بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Pyrolysis of Arundo donax lignocellulosic wastes in a fixed bed reactor under CO2 atmosphere

نویسندگان [English]

  • Mehrshad Nazarpor 1
  • Aliasghar Tatari 2
  • Hamidreza shafaei 3
  • Ahmad Taghizadeh-Alisaraei 4
  • Mahya Khalaghi 5
1 depertment of biosystem mechanics shahrekord university
2 Department of Cellulose Industries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
5 Department of Environmental Pollution, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

The objective of this study was to investigate the pyrolysis of Arundo donax in a fixed bed reactor under CO2 atmosphere. Pyrolysis experimental include the effect of temperature (540, 650 and 750 °C) on the yield of pyrolysis products. After pyrolysis, the proximate and ultimate analysis of bio-oil properties was investigated. The results showed that the maximum yield of bio-oil (33.7%) was obtained at a temperature of 650 °C. By increasing the temperature from 540 to 650 °C, the yield of bio-oil increases and the amount of bio-char decreases. Regarding the effect of temperature increase on the amount of gas, the results show that from 540 to 650 °C, the amount of gas increases and then decreases. The results of gas chromatography – mass spectrometry (GC-MS) showed that the obtained acidic liquid is dark in color with a combination of chemical compounds including acids, alcohols, aldehydes, furfurals, furans, phenols and some aromatic substances. The presence of these compounds indicates that the bio-oil obtained could potentially be used as fuel. Also, the experimental formula of bio-oil obtained was CH1.44O0.54N0.003 with a calorific value of 27.64 MJ/kg.

کلیدواژه‌ها [English]

  • Pyrolysis
  • Fixed bed reactor
  • Arundo donax
  • lignocellulosic materials
  • Bio-oil
1. Q. Lu, W. Li, X. Zhang, Z. Liu, Q. Cao, X. Xie and S. Yuan, “Experimental study on catalytic pyrolysis of biomass over a Ni/Ca-promoted Fe catalyst,” Fuel, 263, 2020, 116690.
2. A. Patel, B. Agrawal and B. R. Rawal, “Pyrolysis of biomass for efficient extraction of biofuel”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42, No. 13, 2020, pp. 1649-1661.
3. T. Y. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy and R. E. Abou-Zeid, “Biomass pyrolysis: past, present, and future,” Environment, Development and Sustainability, 22, No. 1, 2020, pp. 17-32.
4. S. Y. Foong, R. K. Liew, Y. Yang, Y. W. Cheng, P. N. Y. Yek, W. A. W. Mahari and M. Aghbashlo, “Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions,” Chemical Engineering Journal, 389, 2020, 124401.
5. M. C. Basso, E. G. Cerrella, E. L. Buonomo, P. R. Bonelli and A. L. Cukierman, “Thermochemical conversion of Arundo donax into useful solid products.” Energy sources, 27, No. 15, 2005, pp. 1429-1438.
6. R. Verma, S. K. Verma, S. Verma, J. Wang, J. Liu, B. Jing and K. P. Rakesh, “Value-addition of wheat straw through acid treatment and pyrolysis of acid treated residues”, Journal of Cleaner Production, 282, 2021, 124488.
7. J. Yang, X. Wang, B. Shen, Z. Hu, L. Xu and S. Yang, “Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation”, Renewable Energy, 161, 2020, pp. 963-971.
8. N. Gautam and A. Chaurasia, “Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process,” Energy, 190, 2020, 116434.
9. H. Fan, X. Chang, J. Wang and Z. Zhang, “Catalytic pyrolysis of agricultural and forestry wastes in a fixed-bed reactor using K2CO3 as the catalyst,” Waste Management & Research, 38, No. 1, 2020, pp. 78-87.
10. S. Gogoi, N. Bhuyan, D. Sut, R. Narzari, L. Gogoi and R. Kataki, Agricultural wastes as feedstock for thermo-chemical conversion: products distribution and characterization, In Energy Recovery Processes from Wastes, pp. 115-128, Singapore, Springer, 2020.
11. Z. Dong, Z. Liu, X. Zhang, H. Yang, J. Li, S. Xia, Y. Chen and H. Chen, “Pyrolytic characteristics of hemicellulose, cellulose and lignin under CO2 atmosphere,” Fuel, 256, 2019, 115890.
12. R. Rowell, “The chemistry of Solid wood, Based on Short Course and Symposium Sponsored by the Division of Cellulose, Paper and Textile Chemistry”, The 185th Meeting of the American Chemical Society, Seattle, Washington, pp. 70–72, March 20–25, 1984.
13. L. Zoia, A. Salanti, E. L. Tolppa, D. Ballabio and M. Orlandi, “Valorization of side streams from a SSF biorefinery plant: Wheat straw lignin purification study,”BioResources, 12, No. 1, 2017, pp. 1680-1696.
14. Y. Chen, Y. Wu, P. Zhang, D. Hua, M. Yang, C. Li and J. Liu, “Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water,” Bioresource technology, 124, 2012, pp. 190-198.
15. M. Boutaieb, M. Guiza, S. Román, S. Nogales, B. Ledesma and A. Ouederni, “Pine cone pyrolysis: Optimization of temperature for energy recovery,” Environmental Progress & Sustainable Energy, 39, No. 1, 2020, 13272.
16. S. K. Gulsoy and F. Ozturk, “Kraft pulping properties of European black pine cone,” Maderas. Ciencia y tecnología, 17, No. 4, 2015, pp. 875-882.
17. S. Nanda, M. Gong, H. N. Hunter, A. K. Dalai, I. Gökalp and J. A. Kozinski, “An assessment of pinecone gasification in subcritical, near-critical and supercritical water,” Fuel Processing Technology, 168, 2017, pp. 84-96.
18. J. Jeong, H. W. Lee, S. H. Jang, S. Ryu, Y. M. Kim, R. S. Park, S. C. Jung, J. K. Jeon and Y. K. Park, “In-situ catalytic fast pyrolysis of pinecone over HY catalysts,” Catalysts, 9, No. 12, 2019, 1034.
19. H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, 86, 2007, pp. 1781-1788.
20. S. Dawood, T. K. Sen and C. Phan, “Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: kinetic, equilibrium, mechanism and thermodynamic,” Bioresource Technology, 246, 2017, pp. 76-81.
21. V. Mangut, E. Sabio, J. Gañán, J. F. González, A. Ramiro, C. M. González, S. Román and A. Al-Kassir, “Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry,” Fuel Processing Technology, 87, No. 2, 2006, pp. 109-115.
22. H. Durak, “Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes,” Energy Conversion and Management, 99, 2015, pp. 282-298.
23. J. M. Encinar, J. F. Gonzalez, G. Martínez and S. Roman, “Catalytic pyrolysis of exhausted olive oil waste,” Journal of Analytical and Applied Pyrolysis, 85, 2009, pp. 197-203.
24. A. Demirbas, “Effect of temperature on pyrolysis products from four nut shells,” Journal of analytical and applied pyrolysis, 76, 2006, pp. 285-289.
25. Y. R. Wulandari, S. S. Chen, G. C. Hermosa, M. S. A. Hossain, Y. Yamauchi, T. Ahamad, S. M. Alshehri, K. C. W. Wu and H. S. Wu, “Effect of N2 flow rate on kinetic investigation of lignin pyrolysis,” Environmental Research, 190, 2020, 109976.
26. A. K. Varma, L. S. Thakur, R. Shankar and P. Mondal, “Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products,” Waste Management, 89, 2019, pp. 224-235.
27. R. S. Chutia, R. Kataki and T. Bhaskar, “Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake,” Bioresource Technology, 165, 2014, pp. 336-342.
28. Y. Shen, D. Ma and X. Ge, “CO2-looping in biomass pyrolysis or gasification,” Sustainable Energy & Fuels, 1, No. 8, 2017, pp. 1700-1729.
29. T. A. Jambeiro, M. F. S. Silva, L. G. G. Pereira, D. da Silva Vasconcelos, G. Batalha Silva, M. B. Figueirêdo, S. B. Lima and C. A. M. Pires, “Fast pyrolysis of sisal residue in a pilot fluidized bed reactor,” Energy & Fuels, 32, No. 9, 2018, pp. 9478-9492.
30. P. Ghorbannezhad, F. Kool, H. Rudi and S. Ceylan, “Sustainable production of value-added products from fast pyrolysis of palm shell residue in tandem micro-reactor and pilot plant,” Renewable Energy, 145, 2020, pp. 663-670.
31. M. R. Islam, H. Haniu, M. N. Islam and M. S. Uddin, “Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed pyrolysis technology,” Journal of Thermal Science and Technology, 5, No. 1, 2010, pp. 11-23.
32. M. R. Islam, M. N. Islam and M. N. Nabi, “Bio-crude oil from fluidized bed pyrolysis of rice straw and its characterization,” International Energy Journal, 3, No. 1, 2002, pp. 1-12.
33. A. K. Varma and P. Mondal, “Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products,” Industrial Crops and Products, 95, 2017, pp. 704-717.
34. İ. Demiral and E. A. Ayan, “Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product,” Bioresource Technology, 102, No. 4, 2011, pp. 3946-3951.
35. M. I. Yakub, A. Yousif Abdalla, K. Kazi Feroz, Y. Suzana, A. Ibraheem and S. A. Chin, “Pyrolysis of oil palm residues in a fixed bed tubular reactor,” Journal of Power and Energy Engineering, 3, No. 4, 2015, pp. 185-193.
36. T. Rout, D. Pradhan, R. K. Singh and N. Kumari, “Exhaustive study of products obtained from coconut shell pyrolysis,” Journal of Environmental Chemical Engineering, 4, No. 3, 2016, pp. 3696-3705.