بررسی عددی اثر دمای آب اضافه شده به سوخت اکتان بالا در یک موتور اشتعال تراکمی با واکنش‌پذیری کنترل‌شده (RCCI)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی نوشیروانی بابل / گروه پژوهشی انرژی های دریاپایه

2 گروه پژوهشی انرژی های دریا پایه / دانشگاه صنعتی نوشیروانی بابل

3 دانشگاه صنعتی نوشیروانی بابل

چکیده

کاهش مصرف سوخت و آلایندگی‌ها و نیز افزایش توان و بازدهی از اهداف مهم پژوهش‌های حوزه‌  موتورهای درون سوزند.  با‌توجه‌به اثرات مثبت افزودن آب به مخلوط سوخت و هوای ورودی از منیفولد یک موتور درون سوز دماپایین، این مقاله به اثر تغییر دمای آب اضافه‌شده به سوخت اکتان‌بالا در یک موتور درون سوز اشتعال‌تراکمی با واکنش‌پذیری کنترل‌شده و سوخت دوگانه بنزین–دیزل می‌پردازد. دمای آب در بازه‌ی 20 تا 60 درجه‌  سلسیوس تغییر می‌کند.در این راستا، در حالی که مشخصه­ توان خروجی تقریباً ثابت نگه­ داشته شده است، آب با نسبت‌های جرمی مختلف جایگزین بنزین می‌شود، به‌گونه‌ای ‌که میزان کاهش سوخت معادل مقدار آب افزوده باشد، اما جرم سوخت دیزل بدون تغییر باقی می­ماند. برای شبیه‌سازی عددی، از نزم‌افزار AVL-Fire به‌صورت کوپل با کد سینتیک مفصل شیمیایی استفاده شد. با مقایسه‌ نتایج عددی با نتایج آزمایشگاهی در شرایط مشابه، نتایج عددی اعتبارسنجی شدند. نتایج نشان می‌دهند، با افزایش نسبت جرمی آب تا 10درصد، فشار و دمای محفظه احتراق و نیز آلایندگی اکسیدهای نیتروژن به حد قابل توجهی افزایش می‌یابد، ولی با افزایش آب تا نسبت جرمی 15درصد، روند کاهشی دیده می‌شود. ادامه‌ روند افزایش نسبت جرمی آب تا 20 درصد دوباره روند افزایشی را درپی دارد، با این تفاوت که در این نسبت جرمی دمای محفظه احتراق و آلایندگی اکسیدهای نیتروژن، علی‌رغم افزایش مشخصه‌های توان، افزایش چشم‌گیری نداشته‌اند. در ادامه، با درنظرگرفتن نسبت جرمی 20 درصد، بررسی اثرات افزایش دمای آب اضافه‌شده روند رو به بهبودی را نشان می‌دهد، به‌طوری ‌که بیشینه‌ میانگین فشار داخل محفظه احتراق افزایش ‌یافته، منجربه افزایش جزئی فشار متوسط مؤثر اندیکاتوری می‌شود. ازطرفی، به‌دلیل افزایش سطح تکمیل احتراق، آلایندگی CO به‌حد چشم‌گیری کاهش می‌یابد. همچنین، مصرف سوخت ویژه اندیکاتوری تا مقدار 2 درصد کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of the Effect of Adding Water with Different Temperatures to Low-Reactivity Fuel in a Reactivity Controlled Compression Ignition (RCCI) Engine

نویسندگان [English]

  • Rouzbeh Shafaghat 1
  • Saleh Talesh Amiri 2
  • Omid Jahanian 3
1 Sea-Based Energy Research Group / Babol Noshirvani University of Technology
2 Sea-Based Energy Research Group / Babol Noshirvani University of Technology
3 Babol Noshirvani University of Technology
چکیده [English]

Reducing fuel consumption and emissions, as well as increasing the power and efficiency, have always been important in IC engines researches. Due to the positive effects of adding water to the inlet fuel-air mixture through the manifold of a low-temperature engine, the effect of the temperature of water added to the low-reactivity fuel in an RCCI engine with gasoline-diesel dual-fuel has been investigated. The water temperature varies between [20-60]oC. Water is substituted for gasoline with different mass-ratios; so that the reduction of fuel will be equal to the amount of water added. For numerical simulation, the AVL-Fire was used as a couplet with the detailed chemical kinetics code. For validation, numerical results are compared with similar experimental data. The results show that by increasing the mass-ratio of the replaced water up to 10%, the in-cylinder pressure and temperature as well as the NOx increase significantly; but with an increase in mass-ratio to 15%, a decreasing trend is seen. With the increase in the mass-ratio to 20%, it will again lead to an increasing trend; however, at this mass-ratio, the in-cylinder temperature, and the NOx have not increased significantly, despite the increase in power characteristics. Then, considering the mass-ratio of 20%, the evaluation of water temperature increasing shows an improving trend; so that the maximum average in-cylinder pressure is increased and leads to a slight increase in the IMEP. Also, due to the increase in combustion quality, CO is significantly reduced, as well as the ISFC is reduced up to 2%.

کلیدواژه‌ها [English]

  • RCCI
  • water injection
  • Water temperature
  • Indicated Mean Effective Pressure
  • Fuel consumption
Manente, V., B. Johansson, and W. Cannella, Gasoline partially premixed combustion, the future of internal combustion engines? International Journal of Engine Research, 2011. 12(3): p. 194-208.
2.    Akihama, Kazuhiro, Yoshiki Takatori, Kazuhisa Inagaki, Shizuo Sasaki, and Anthony M. Dean. "Mechanism of the smokeless rich diesel combustion by reducing temperature." Sae Transactions (2001): 648-662.
3.    Yao, M., Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in energy and combustion science, 2009. 35(5): p. 398-437.
4.    Ma, Shuaiying, Zunqing Zheng, Haifeng Liu, Quanchang Zhang, and Mingfa Yao. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion." Applied Energy 109 (2013): 202-212.
5.    Yang, Binbin, Mingfa Yao, Wai K. Cheng, Yu Li, Zunqing Zheng, and Shanju Li. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel." Applied Energy 113 (2014): 722-733.
6.    Dec, John E. "Advanced compression-ignition engines—understanding the in-cylinder processes." Proceedings of the combustion institute 32.2 (2009): 2727-2742.
7.    Tsurushima, Tadashi, Eiji Kunishima, Yasuo Asaumi, Yuzo Aoyagi, and Yoshiteru Enomoto. "The effect of knock on heat loss in homogeneous charge compression ignition engines." SAE Transactions (2002): 425-441.
8.    Kokjohn, S.L., M.P. Musculus, and R.D. Reitz, Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling. Combustion and Flame, 2015. 162(6): p. 2729-2742.
9.    Chintala, V. and K. Subramanian, Hydrogen energy share improvement along with NOx (oxides of nitrogen) emission reduction in a hydrogen dual-fuel compression ignition engine using water injection. Energy conversion and management, 2014. 83: p. 249-259.
10.    Kokjohn, Sage L., Reed M. Hanson, Derek A. Splitter, and Rolf D. Reitz. "Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending." SAE International Journal of Engines 2, no. 2 (2010): 24-39.
11.    Hanson, Reed M., Sage L. Kokjohn, Derek A. Splitter, and Rolf D. Reitz. "An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine." SAE international journal of engines 3, no. 1 (2010): 700-716.
12.    Fakhari, Amir Hossein, Rouzbeh Shafaghat, Omid Jahanian, Hossein Ezoji, and Seyed Sadegh Motallebi Hasankola. "Numerical simulation of natural gas/diesel dual-fuel engine for investigation of performance and emission." Journal of Thermal Analysis and Calorimetry 139, no. 4 (2020): 2455-2464.
13.    Zhou, Dezhi, Wenming Yang, Feiyang Zhao, and Jing Li. "Dual-fuel RCCI engine combustion modeling with detailed chemistry considering flame propagation in partially premixed combustion." Applied Energy 203 (2017): 164-176.
14.    Feng, Hongqing, Chunhong Zhang, Meiying Wang, Daojian Liu, Xiaoxi Yang, and Chia-fon Lee. "Availability analysis of n-heptane/iso-octane blends during low-temperature engine combustion using a single-zone combustion model." Energy conversion and management 84 (2014): 613-622.
15.    Soloiu, Valentin, Marvin Duggan, Spencer Harp, Brian Vlcek, and David Williams. "PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine." Energy 52 (2013): 143-154.
16.    Gharehghani, Ayatallah, Reza Hosseini, Mostafa Mirsalim, S. Ali Jazayeri, and Talal Yusaf. "An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas." Energy 89 (2015): 558-567.
17.    Poorghasemi, Kamran, Rahim Khoshbakhti Saray, Ehsan Ansari, Behrouz Khoshbakht Irdmousa, Mehdi Shahbakhti, and Jeffery D. Naber. "Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine." Applied Energy 199 (2017): 430-446.
18.    Liu, Jie, Fuyuan Yang, Hewu Wang, Minggao Ouyang, and Shougang Hao. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing." Applied Energy 110 (2013): 201-206.
19.    Kalsi, S.S. and K. Subramanian, Experimental investigations of effects of hydrogen blended CNG on performance, combustion and emissions characteristics of a biodiesel fueled reactivity controlled compression ignition engine (RCCI). International Journal of Hydrogen Energy, 2017. 42(7): p. 4548-4560.
20.    Verhelst, S. and T. Wallner, Hydrogen-fueled internal combustion engines. Progress in energy and combustion science, 2009. 35(6): p. 490-527.
21.    Nag, Sarthak, Priybrat Sharma, Arpan Gupta, and Atul Dhar. "Combustion, vibration and noise analysis of hydrogen-diesel dual fuelled engine." Fuel 241 (2019): 488-494.
22.    Liu, Jie, Fuyuan Yang, Hewu Wang, and Minggao Ouyang. "Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine." International journal of hydrogen energy 37, no. 10 (2012): 8688-8697.
23.    Taghavifar, H., S. Anvari, and A. Parvishi, Benchmarking of water injection in a hydrogen-fueled diesel engine to reduce emissions. International Journal of Hydrogen Energy, 2017. 42(16): p. 11962-11975.
24.    Tornatore, C., R. Calabria, L. Marchitto, J. Belletre, P. Massoli, A. Montillet, and G. Valentino. "Optical Analysis of Combustion and Soot Formation in a CI Engine Fuelled with Water in Diesel Emulsion through Microchannels Emulsification." In Journal of Physics: Conference Series, vol. 1110, no. 1, p. 012010. IOP Publishing, 2018.
25     Jahanian, O. and S.A. Jazayeri. A comprehensive study on natural gas HCCI engine response to different initial conditions via a thermo-kinetic engine model. in ASME 2009 Internal Combustion Engine Division Fall Technical Conference. 2010. American Society of Mechanical Engineers Digital Collection.
26.    Golovitchev, V., M. Pilia, and C. Bruno, Autoignition of methane mixtures-the effect of hydrogen peroxide. Journal of Propulsion and Power, 1996. 12(4): p. 699-707.
27.    Ezoji, H., R. Shafaghat, and O. Jahanian, Numerical simulation of dimethyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions. Journal of Thermal Analysis and Calorimetry, 2019. 135(3): p. 1775-1785.
28.    Shah, Samiur Rahman, Alain Maiboom, Xavier Tauzia, and Jean-François Hétet. Experimental study of inlet manifold water injection on a common rail HSDI automobile diesel engine, compared to EGR with respect to PM and NOx emissions and specific consumption. No. 2009-01-1439. SAE Technical Paper, 2009.
29.    Varde, K. and G. Frame, Hydrogen aspiration in a direct injection type diesel engine-its effects on smoke and other engine performance parameters. International Journal of Hydrogen Energy, 1983. 8(7): p. 549-555.
30.    Hu, B., C.J. Rutland, and T.A. Shethaji, A mixed-mode combustion model for large-eddy simulation of diesel engines. Combustion Science and Technology, 2010. 182(9): p. 1279-1320.
31.    Kuo, K.K., Principles of combustion. 2005.
32.    AVL FIRE User Manual, CFD-Solver_v2011_CFD-Solver.
33.    Hasankola, Seyed Sadegh Motallebi, Rouzbeh Shafaghat, Omid Jahanian, and Kamyar Nikzadfar. "An experimental investigation of the injection timing effect on the combustion phasing and emissions in reactivity-controlled compression ignition (RCCI) engine." Journal of Thermal Analysis and Calorimetry 139, no. 4 (2020): 2509-2516.
34.    Inagaki, Kazuhisa, Takayuki Fuyuto, Kazuaki Nishikawa, Kiyomi Nakakita, and Ichiro Sakata. Dual-fuel PCI combustion controlled by in-cylinder stratification of ignitability. No. 2006-01-0028. SAE Technical Paper, 2006.
35.    Abu-Zaid, M., Performance of single cylinder, direct injection diesel engine using water fuel emulsions. Energy conversion and Management, 2004. 45(5): p. 697-705.
36.    Nutu, Nikolaos Cristian, Constantin Pana, Niculae Negurescu, Alexandru Cernat, Dinu Fuiorescu, and Liviu Nemoianu. "LPG-an alternative solution to fuel a car diesel engine." In AMMA 2018. 2018.
37.    Saad, I. and S. Bari. Effect by guide vane swirl and tumble device to improve the air-fuel mixing of diesel engine running with higher viscous fuels. in ASME 2013 International Mechanical Engineering Congress and Exposition. 2013. American Society of Mechanical Engineers.
38.    Yousefzadeh, A. and O. Jahanian, Using detailed chemical kinetics 3D-CFD model to investigate combustion phase of a CNG-HCCI engine according to control strategy requirements. Energy conversion and management, 2017. 133: p. 524-534.
39.    Zhen, Dong, Tie Wang, Fengshou Gu, Belachew Tesfa, and Andrew Ball. "Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels." Measurement Science and Technology 24, no. 5 (2013): 055005.
40.    Szwaja, S. and K. Grab-Rogalinski, Hydrogen combustion in a compression ignition diesel engine. International journal of hydrogen energy, 2009. 34(10): p. 4413-4421.
41.    Wei, M., et al., The effect of water injection on the control of in-cylinder pressure and enhanced power output in a four-stroke spark-ignition engine. Sustainability, 2016. 8(10): p. 993.
42.    Christensen, M., A. Hultqvist, and B. Johansson, Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. SAE transactions, 1999: p. 2099-2113.