مدلسازی سه بعدی فرایند احتراق در یک موتور اسکرمجت با لحاظ کردن مکانیزم شیمیایی چند واکنشی

نوع مقاله : مقاله پژوهشی

نویسندگان

عضو هیات علمی / دانشگاه صنعتی مالک اشتر

چکیده

د
در این مقاله، فرایند احتراق در یک موتور اسکرم ­جت DLR با لحاظ­کردن مکانیزم شیمیایی چندواکنشی        مدل­سازی و تحلیل شده است. تحلیل انجام ­شده به­ کمک نرم ­افزار فلوئنت و به­ صورت دوبعدی و سه ­بعدی انجام شده است. نتایج تحقیق نشان می‌دهد که عملکرد کلی موتور اسکرم­جت در حالت سه ­بعدی شبیه به حالت دوبعدی است. مقدار نیروی پیش­رانش و بازده احتراق در شبیه‌سازی سه­بعدی به­ترتیب 0.9% و 1.4% با حل دوبعدی تفاوت دارد. به­ منظور درنظرگرفتن اثر تعداد واکنش­ها بر روی فرایند احتراق، احتراق هیدروژن به­ صورت دوبعدی با 19 زیرواکنش نیز شبیه ­سازی شده­ است. نتایج حل نشان می­ دهند که عملکرد کلی اسکرم­ جت در حالت ت ک­واکنشی و چندواکنشی مشابه است. بررسی­ ها نشان می ­دهد نیروی پیش­رانش و بازده احتراق در حالت چندواکنشی به ­ترتیب 4/1% و 4/4% با حالت تک ­واکنشی فرق دارند. در نقاطه مقابل، ناحیه فروصوت در حالت سه­ بعدی و چندواکنشی به ­ترتیب 48.9 و 17.7 درصد بیشتر از حالت پایه امتداد پیدا کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-dimensional modeling of the combustion process of a scramjet by considering multi-stage reaction mechanism

نویسندگان [English]

  • jamasb pirkandi
  • Mostafa Mahmoodi
Department of Aerospace Engineering, Maleke ashtar University
چکیده [English]

In this investigation, the combustion process in DLR scramjet is simulated and studied by considering multi-stage reaction mechanism. This study is conducted both three-dimensionally and two-dimensionally with the help of Fluent. The results indicate that the general performance of the scramjet is nearly the same for both the two-dimensional and three-dimensional cases, that is to say the difference between calculated thrust and combustion efficiency in these two cases is only 0.9% and 1.4%, respectively. To consider the effect of the chemical mechanism on the obtained results, a two-dimensional simulation of the scramjet is done with a detailed chemical mechanism, which includes 19 reactions. The results illustrate that the general performance of the scramjet is nearly the same. More accurately, the difference between thrust and combustion efficiency in the one-reaction and the multi-reaction cases is only 1.4% and 4.4%, respectively. In contrast, the subsonic region behind the strut in three-dimensional case and multi-stage reaction mechanism case are 48.9% and 17.7% longer than the base case, respectively.

کلیدواژه‌ها [English]

  • Supersonic combustion
  • Scramjet
  • Numerical Simulation
  • Turbulent flow
  1.  K. Roberts and D. Wilson, “Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00,” 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida, 2009, pp. 1-25.
  2. J. Urzay, “Supersonic combustion in air-breathing propulsion systems for hypersonic flight,” Annual Review of Fluid Mechanics, 50, 2018, pp. 593-627.
  3. G. Y. Anderson and P. B. Gooderum, “Exploratory tests of two strut fuel injectors for supersonic combustion,” NASA Technical note, D-7581, 1974.
  4. R. Boyce, S. Gerard and A. Paull, “The HyShot scramjet flight experiment-flight data and CFD calculations compared,” 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia, 2003, pp. 1-8.
  5. R. Boyce, A. Paull, R. Stalker, M. Wendt, N. Chinzei and H. Miyajima, “Comparison of supersonic combustion between impulse and vitiation-heated facilities,” Journal of Propulsion and Power, 16, No. 4, 2000, pp. 709-717.
  6. D. B. Le, C. P. Goyne, R. H. Krauss and J. C. McDaniel, “Experimental study of a dual-mode scramjet isolator,” Journal of Propulsion and Power, 24, No. 5, 2008, pp. 1050-1057.
  7. D. J. Micka and J. F. Driscoll, “Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder,” Proceedings of the combustion institute, 32, No. 2, 2009, pp. 2397-2404.
  8. D. Scherrer, O. Dessornes, M. Ferrier, A. Vincent-Randonnier, Y. Moule and V. Sabel'Nikov, “Research on supersonic combustion and scramjet combustors at ONERA,” Aerospacelab Journal, No. 11, 2016, pp. 1-20.
  9. A. Storch, M. Bynum, J. Liu and M. Gruber, “Combustor operability and performance verification for HIFiRE flight 2,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, 2011, pp. 1-13.
  10. M. Suraweera, D. Mee and R. Stalker, “Skin friction reduction in hypersonic turbulent flow by boundary layer combustion,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005, pp. 1-11.
  11. Z. Zhong-hua Le Jia-ling, “Parallel Modeling of Three-Dimensional Scramjet Combustor and Comparisons with Experiment’s Results,” Theoetical and Applied Mechanics Conference, China Aerodynamics Research & Development Center, 2002.
  12. W. Waidmann, F. Alff, U. Brummund, M. Böhm, W. Clauss and M. Oschwald, “Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET),” DGLR Jahrbuch Conference, Germany, 1994, pp. 1-10..
  13. M. Oevermann, “Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling,” Aerospace science and technology, 4, No. 7, 2000, pp. 463-480.
  14. S. Menon, F. Genin, and B. Chernyavsky, “Large eddy simulation of scramjet combustion using a subgrid mixing/combustion model,” 12th AIAA international space planes and hypersonic systems and technologies, Virginia, 2003, pp. 1-14.
  15. M. Berglund and C. Fureby, “LES of supersonic combustion in a scramjet engine model,” Proceedings of the Combustion Institute, 31, No. 2, 2007, pp. 2497-2504.
  16. W. Huang, Z. Wang, S. Luo and J. Liu, “Parametric effects on the combustion flow field of a typical strut-based scramjet combustor,” Chinese science bulletin, 56, No. 35, 2011, pp. 3871-3877.
  17. G. Choubey and K. Pandey, “Investigation on the effects of operating variables on the performance of two-strut scramjet combustor,” International Journal of Hydrogen Energy, 41, No. 45, 2016, pp. 20753-20770.
  18. O. R. Kummitha, “Numerical analysis of hydrogen fuel scramjet combustor with turbulence development inserts and with different turbulence models,” International Journal of Hydrogen Energy, 42, No. 9, 20017, pp. 6360-6368.
  19. [O. R. Kummitha, L. Suneetha and K. Pandey, “Numerical analysis of scramjet combustor with innovative strut and fuel injection techniques,” International Journal of Hydrogen Energy, 42, No. 15, 2017, pp. 10524-10535.
  20. O. R. Kummitha, K. Pandey and R. Gupta, “Numerical analysis of hydrogen fueled scramjet combustor with innovative designs of strut injector,” International Journal of Hydrogen Energy, 45, No. 25, 2020, pp. 13659-13671.
  21. J. Shin and H. G. Sung, “Combustion characteristics of hydrogen and cracked kerosene in a DLR scramjet combustor using hybrid RANS/LES method,” Aerospace Science and Technology, 80, 2018, pp. 433-444.
  22. L. Suneetha, P. Randive and K. Pandey, “Numerical investigation on influence of diamond shaped strut on the performance of a scramjet combustor,” International Journal of Hydrogen Energy, 44, No. 13, 2019, pp. 6949-6964.
  23. C. Li, X. Chen, Y. Li, O. Musa and L. Zhu, “Numerical investigation on the performance of scramjet combustor with a novel strut configuration,” Applied Thermal Engineering, 159, 2019, p. 113894.
  24. M. Zahedzadeh and F. Ami, “The numerical study of the gas flow in a nozzle of sctemjet,” presented at the The 16th International Conference of Iran Airspace Associations, Tehran, 2017. (In Persian)
  25. M. Zahedzadeh and F. Ami, “The numerical study  of the cross injection in the supersonic combustion chamber of a scramjet engine,” Technology in airspace engineering, 2, No. 1, 2017, pp. 1-8. (In Persian)
  26. S. Mousavi and S. Tabe Jamat, “The analysis of supersonic combustion chamber simulation of a scramjet engine,” presented at the The 10th Conference of Iran airspace association, Tehran, 2011. (In Persian)
  27. S. Mousavi and S. Tabe Jamat, “The numerical study of a scramjet inlet,” 10th conference of Iran airspace association, Tehran, 2011. (In Persian)
  28. C. Cao and T. Ye, “RANS simulation of turbulent non-premixed H2/air combustion in a scramjet,” Journal of Propulsion Technology, 36,No. 1, 2015, pp. 89-96.
  29. H. Zhang, N. Wang, Z. Wu, W. Han and R. Du, “A new model of regression rate for solid fuel scramjet,” International Journal of Heat and Mass Transfer, 144, 2019, pp. 1-12.
  30. A. Ingenito, “Theoretical investigation of air vitiation effects on hydrogen fuelled scramjet performance,” International Journal of Hydrogen Energy, 40, No. 6, 2015, pp. 2862-2870.
  31. G. Choubey and K. Pandey, “Effect of different strut+ wall injection techniques on the performance of two-strut scramjet combustor,” International Journal of Hydrogen Energy, 42, No. 18, 2017, pp. 13259-13275.
  32. G. Choubey and K. Pandey, “Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor,” Acta Astronautica, 145, 2018, pp. 93-104.
  33. O. R. Kummitha, K. M. Pandey and R. Gupta, “CFD analysis of a scramjet combustor with cavity based flame holders,” Acta Astronautica, 144, 2018, pp. 244-253.
  34. W. Huang, “Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches,” international journal of hydrogen energy, 39, No. 8, 2014, pp. 3914-3925.
  35. W. Huang, “Effect of jet-to-crossflow pressure ratio arrangement on turbulent mixing in a flowpath with square staged injectors,” Fuel, 144, 2015, pp. 164-170.
  36. W. Huang, W. d. Liu, S. b. Li, Z. x. Xia, J. Liu and Z. g. Wang, “Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows,” Acta Astronautica, 73, 2012, pp. 1-9.
  37. O. R. Kummitha, K. Pandey and R. Gupta, “Numerical analysis of hydrogen fueled scramjet combustor with innovative designs of strut injector,” International Journal of Hydrogen Energy, 45, No. 25, 2020, pp. 13659-13671.
  38. B. F. Magnussen, “The eddy dissipation concept: A bridge between science and technology,” ECCOMAS thematic conference on computational combustion, Lisbon, Portugal, 2005, pp. 1-25.
  39. A. Miettinen and T. Siikonen, “Application of pressure- and density-based methods for different flow speeds,” International Journal for Numerical Methods in Fluids, vol. 79, no. 5, 2015, pp. 243-267.
  40. G. Choubey and K. Pandey, “Effect of variation of angle of attack on the performance of two-strut scramjet combustor,” international journal of hydrogen energy, 41, No. 26, 2016, pp. 11455-11470.
  41. Y. Bartosiewicz, Z. Aidoun and Y. Mercadier, “Numerical assessment of ejector operation for refrigeration applications based on CFD,” Applied Thermal Engineering, 26, No. 5, 2006, pp. 604-612.
  42. W. Huang, “Investigation on the effect of strut configurations and locations on the combustion performance of a typical scramjet combustor,” Journal of Mechanical Science and Technology, 29, No. 12, 2015, pp. 5485-5496.
  43. J. Shin, K. H. Moon and H.-G. Sung, “Numerical Simulation of Hydrogen Combustion in Model SCRAMJET Combustor Using IDDES Framework,” 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 2015, pp. 1-12.
  44. C. V. Naik andet al., “Detailed chemical kinetic mechanism for surrogates of alternative jet fuels,” Combustion and Flame, 158, No. 3, 2011, pp. 434-445.
  45. A. Potturi and J. Edwards, “LES/RANS simulation of a supersonic combustion experiment,” 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Nashville, Tennessee, 2012, pp. 1-20.
  46. H. Yamashita, M. Shimada and T. Takeno, “A numerical study on flame stability at the transition point of jet diffusion flames,” Symposium (International) on Combustion, 26, No. 1, 1996, pp. 27-34.