شبیه‌سازی و تحلیل عددی یک موتور اسکرمجت نمونه (دی ال ار) در شرایط احتراقی و غیر احتراقی

نوع مقاله: مقاله پژوهشی

نویسندگان

عضو هیات علمی / دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله، فرایند احتراق در یک موتور اسکرم جت نمونه (DLR) از دیدگاه عددی شبیه­ سازی و تحلیل شده است. برای انجام این مدل­ سازی ابتدا این موتور برای حالت غیراحتراقی شبیه‌سازی و اعتبارسنجی شده است. نتایج این بخش نشان می­ دهد که روش استفاده­ شده توانایی پیش­‌بینی میدان‌های سرعت و فشار را با دقت مناسبی دارد. در ادامه مسئله با درنظرگرفتن فرایند احتراق و با درنظرگرفتن یک واکنش شیمیایی شبیه‌سازی شده است. نتایج حاصل از دو تحلیل انجام­ شده نشان می­دهد که در حالت احتراقی ناحیه فروصوت تا فاصله 141 میلی­متری از پشت مانع ادامه دارد، این در حالی است که برای حالت غیراحتراقی این فاصله تنها 22 میلی­ متر است. در حالت غیراحتراقی موج­ ها پس از برخورد با جت با اندکی انحراف از آن عبور می­ کنند، در حالی که در حالت احتراقی موج­ ها بعد از برخورد با جت بازتاب داده می­ شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The numerical simulation and analysis of a prototype scramjet (DLR) in reacting and non-reacting conditions

نویسندگان [English]

  • jamasb pirkandi
  • Mostafa Mahmoodi
Faculty of Aerospace, Malek Ashtar University of Technology
چکیده [English]

In this paper, the combustion process in a prototype scramjet (DLR) is numerically simulated and studied. To that end, the scramjet is initially simulated and validated in the non-reacting condition. The results show that the method used has the ability to predict the fields of velocity and pressure with appropriate accuracy. Then, the same scramjet is simulated and validated for the reacting case by considering one-reaction model. The results of these two simulations illustrates that the maximum distance of subsonic area from the strut is 141 mm in the reacting case while this distance is only 22 mm in the non-reacting case. the waves pass through the jet region with a slight deviation in the non-reacting case while they are reflected after hitting the jet region in the reacting case.the waves pass through the jet region with a slight deviation in the non-reacting case while they are reflected after hitting the jet region in the reacting case.

کلیدواژه‌ها [English]

  • Supersonic combustion
  • Scramjet
  • numerical simulation
  • Turbulent Flow
  1.  K. Roberts and D. Wilson, “Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00,” 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida, 2009, pp. 1-25.
  2. J. Urzay, “Supersonic combustion in air-breathing propulsion systems for hypersonic flight,” Annual Review of Fluid Mechanics, 50, 2018, pp. 593-627.
  3. G. Y. Anderson and P. B. Gooderum, “Exploratory tests of two strut fuel injectors for supersonic combustion,” NASA Technical note, 1974.
  4. R. Boyce, S. Gerard and A. Paull, “The HyShot scramjet flight experiment-flight data and CFD calculations compared,” in 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia, 2003, pp. 1-8.
  5. R. Boyce, A. Paull, R. Stalker, M. Wendt, N. Chinzei and H. Miyajima, “Comparison of supersonic combustion between impulse and vitiation-heated facilities,” Journal of Propulsion and Power, 16, No. 4, 2000, pp. 709-717.
  6. D. B. Le, C. P. Goyne, R. H. Krauss and J. C. McDaniel, “Experimental study of a dual-mode scramjet isolator,” Journal of Propulsion and Power, 24, No. 5, 2008, pp. 1050-1057.
  7. D. J. Micka and J. F. Driscoll, “Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder,” Proceedings of the combustion institute, 32, No. 2, 2009, pp. 2397-2404.
  8. D. Scherrer, O. Dessornes, M. Ferrier, A. Vincent-Randonnier, Y. Moule and V. Sabel'Nikov, “Research on supersonic combustion and scramjet combustors at ONERA,”Aerospacelab Journal, No 11, pp. 1-20, 2016.
  9.  A. Storch, M. Bynum, J. Liu and M. Gruber, “Combustor operability and performance verification for HIFiRE flight 2,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, 2011, pp. 1-13.
  10. M. Suraweera, D. Mee and R. Stalker, “Skin friction reduction in hypersonic turbulent flow by boundary layer combustion,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005, pp. 1-11.
  11. Z. Zhong-hua Le Jia-ling, “Parallel Modeling of Three-Dimensional Scramjet Combustor and Comparisons with Experiment’s Results,” Theoetical and Applied Mechanics Conference, China Aerodynamics Research & Development Center, 2002.
  12. W. Waidmann, F. Alff, U. Brummund, M. Böhm, W. Clauss and M. Oschwald, “Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET),” DGLR Jahrbuch Conference, Germany, 1994, pp. 1-10.
  13. M. Berglund and C. Fureby, “LES of supersonic combustion in a scramjet engine model,” Proceedings of the Combustion Institute, 31, No. 2, 2007, pp. 2497-2504.
  14. W. Huang, “Investigation on the effect of strut configurations and locations on the combustion performance of a typical scramjet combustor,” Journal of Mechanical Science and Technology, 29, No. 12, 2015, pp. 5485-5496.
  15. W. Huang, Z. Wang, S. Luo and J. Liu, “Parametric effects on the combustion flow field of a typical strut-based scramjet combustor,” Chinese science bulletin, 56, No. 35, 2011, pp. 3871-3877.
  16. S. Kumar, S. Das and S. Sheelam, “Application of CFD and the Kriging method for optimizing the performance of a generic scramjet combustor,” Acta Astronautica, 101, 2014, pp. 111-119.
  17. S. Menon, F. Genin, and B. Chernyavsky, “Large eddy simulation of scramjet combustion using a subgrid mixing/combustion model,” 12th AIAA international space planes and hypersonic systems and technologies, Virginia, 2003, pp. 1-14.
  18. M. Oevermann, “Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling,” Aerospace science and technology, 4, No. 7, 2000, pp. 463-480.
  19. A. Potturi and J. Edwards, “LES/RANS simulation of a supersonic combustion experiment,” 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Nashville, Tennessee, 2012, pp. 1-20.
  20. J. f. Zou, Y. Zheng and O. Z. Liu, “Simulation of turbulent combustion in DLR Scramjet,” Journal of Zhejiang University-SCIENCE A, 8, No. 7, 2007, pp. 1053-1058.
  21. M. Zahedzadeh and F. Ami, “The numerical study of the gas flow in a nozzle of sctemjet,” The 16th International Conference of Iran Airspace Associations, Tehran, 2017. (In Persian)
  22. M. Zahedzadeh and F. Ami, “The numerical study  of the cross injection in the supersonic combustion chamber of a scramjet engine,” Technology in airspace engineering, 2, No. 1, 2017, pp. 1-8. (In Persian)
  23. S. Mousavi and S. Tabe Jamat, “The analysis of supersonic combustion chamber simulation of a scramjet engine,” The 10th Conference of Iran airspace association, Tehran, 2011. (In Persian)
  24. A. Miettinen and T. Siikonen, “Application of pressure- and density-based methods for different flow speeds,” International Journal for Numerical Methods in Fluids, 79, No. 5, 2015, pp. 243-267.
  25. R. Milligan, D. Eklund, J. Wolff, T. Mathur and M. Gruber, “Dual mode scramjet combustor: analysis of two configurations,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2010, pp. 1-19.
  26. B. J. Bornhoft, E. Hassan, D. Peterson and E. Luke, “Reacting Dynamic Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy-Simulation of a Round Dual Mode Scramjet Combustor,” AIAA Aviation 2019 Forum, Dallas, Texas, 2019, pp. 1-12.
  27. R. Baurle, T. Mathur, M. Gruber and K. Jackson, “A numerical and experimental investigation of a scramjet combustor for hypersonic missile applications,” 34th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, USA,1998, pp. 1-17.
  28. A. Ingenito, “Theoretical investigation of air vitiation effects on hydrogen fuelled scramjet performance,” International Journal of Hydrogen Energy, 40, No. 6, 2015, pp. 2862-2870.
  29. K. M. Pandey and S. Roga, “CFD Analysis of Hypersonic Combustion of H2-Fueled Scramjet Combustor with Cavity Based Fuel Injector at Flight Mach 6,” in Applied Mechanics and Materials, 656, 2014, pp. 53-63.
  30. H. Zhang, N. Wang, Z. Wu, W. Han and R. Du, “A new model of regression rate for solid fuel scramjet,” International Journal of Heat and Mass Transfer, 144, 2019, pp. 118645.
  31. G. Choubey and K. Pandey, “Effect of different strut+ wall injection techniques on the performance of two-strut scramjet combustor,” International Journal of Hydrogen Energy, 42, No. 18, 2017, pp. 13259-13275.
  32. G. Choubey and K. Pandey, “Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor,” Acta Astronautica, 145, 2018, pp. 93-104.
  33. O. R. Kummitha, K. M. Pandey and R. Gupta, “CFD analysis of a scramjet combustor with cavity based flame holders,” Acta Astronautica, 144, 2018, pp. 244-253.
  34. O. R. Kummitha, L. Suneetha and K. Pandey, “Numerical analysis of scramjet combustor with innovative strut and fuel injection techniques,” International Journal of Hydrogen Energy, 42, No. 15, 2017, pp. 10524-10535.
  35. W. Huang, “Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches,” international journal of hydrogen energy, 39, No. 8, 2014, pp. 3914-3925.
  36. W. Huang, “Effect of jet-to-crossflow pressure ratio arrangement on turbulent mixing in a flowpath with square staged injectors,” Fuel,144, 2015, pp. 164-170.
  37. W. Huang, W. d. Liu, S. b. Li, Z. x. Xia, J. Liu and Z. g. Wang, “Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows,” Acta Astronautica, 73, 2012, pp. 1-9.
  38. G. Choubey and K. Pandey, “Effect of variation of angle of attack on the performance of two-strut scramjet combustor,” international journal of hydrogen energy, 41, No. 26, 2016, pp. 11455-11470.
  39. G. Choubey and K. Pandey, “Investigation on the effects of operating variables on the performance of two-strut scramjet combustor,” International Journal of Hydrogen Energy, 41, No. 45, 2016, pp. 20753-20770.
  40. O. R. Kummitha, “Numerical analysis of hydrogen fuel scramjet combustor with turbulence development inserts and with different turbulence models,” International Journal of Hydrogen Energy, 42, No. 9, 2017, pp. 6360-6368.
  41. O. R. Kummitha, K. Pandey and R. Gupta, “Numerical analysis of hydrogen fueled scramjet combustor with innovative designs of strut injector,” International Journal of Hydrogen Energy, 45, No. 25, 2020, pp.13659-13671.
  42. J. Shin and H. G. Sung, “Combustion characteristics of hydrogen and cracked kerosene in a DLR scramjet combustor using hybrid RANS/LES method,” Aerospace Science and Technology, 80, 2018, pp. 433-444.
  43. Y. Bartosiewicz, Z. Aidoun and Y. Mercadier, “Numerical assessment of ejector operation for refrigeration applications based on CFD,” Applied Thermal Engineering, 26, No. 5, 2006, pp. 604-612.
  44. J. Shin, K. H. Moon and H.-G. Sung, “Numerical Simulation of Hydrogen Combustion in Model SCRAMJET Combustor Using IDDES Framework,” 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 2015, pp. 1-12.
  45. G. Constantinescu and K. Squires, “LES and DES investigations of turbulent flow over a sphere,” 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1999, pp. 1-11.