بررسی عددی اثر سطوح مختلف ناهمگنی بر طول شعله آشفته در محفظه احتراق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک - دانشکده مهندسی - دانشگاه کاشان

2 عضو هیات علمی دانشکده مهندسی مکانیک - دانشگاه کاشان

چکیده

احتراق مخلوط واکنش‌دهنده‌های ناهمگن نوعی از احتراق است که در آن اختلاط سوخت و هوا به­ طور کامل انجام نمی­ شود. از آنجا که مطالعات گذشته بر روی این نوع احتراق در فضای باز انجام‌ شده، هدف این تحقیق بررسی عددی مشاهده اثر سطوح مختلف ناهمگنی بر طول شعله در دبی‌ها و نسبت هم‌ارزی‌های مختلف در فضای بسته و بدون حضور هوای محیط و نفوذ آن بر شعله است. در این بررسی عددی از مدل‌سازی معادلات ناویراستوکس به روش میانگین‌گیری رینولدز و مدل‌سازی آشفتگی k-ε استاندارد و مدل‌سازی جریان واکنشی روش اتلاف گردابه‌ای EDC استفاده ‌شده است. همچنین، در این مطالعه از سینتیک GRI2.11 استفاده‌ شده است. مشاهدات نشان می‌دهد که میزان طول شعله در طول ناهمگنی مشخصی کمینه می‌شود، به‌طوری‌ که در طول‌های ناهمگنی قبل و بعد از آن، طول شعله افزایش می‌یابد. این طول ناهمگنی با تغییر دبی و تغییر نسبت هم‌ارزی‌ متفاوت است. همچنین، نتایج نشان می‌دهد که طول شعله در حالت غیرپیش ­مخلوط کمتر از طول شعله در حالتی است که مخلوط سوخت و هوا به‌صورت پیش­ مخلوط در محفظه مشتعل می‌شوند. ولی، هرچه نسبت هم‌ارزی کاهش پیدا می‌کند، اختلاف کمتر می‌شود، به‌طوری‌ که در نسبت هم‌ارزی‌های کمتر طول شعله در حالت غیرپیش­ مخلوط بیشتر از حالت پیش­ مخلوط می‌شود. همچنین، سطح مقطع شعله در داخل محفظه چه در جهت طولی و چه در جهت عرضی با تغییر طول ناهمگنی تغییر می‌کند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of The effect of different levels of inhomogeneity on turbulent flame length in combustion chamber

نویسنده [English]

  • seyed mohammad mahdi sabet 1
1 PhD student of Kashan University
2
چکیده [English]

Combustion of a mixture of inhomogeneity reactants is a type of combustion that has been used since 1997. All previous studies have been done on this type of outdoor combustion. The aim of this study was to investigate the numerical effect of different levels of inhomogeneity on flame length at different velocities and ratios in closed space without the presence of ambient air and its influence on flame. In this numerical study, the configuration modeling of Navier Stokes equations using Reynolds averaging method has been used. The results show that the flame length during a given inhomogeneity has a low limit so that the flame length increases before and after the inhomogeneity. This length of inhomogeneity varies at different velocities and equivalence ratios. The results also show that the flame length in the non-premixed state is less than the flame length when the fuel / air mixture is almost pre-mixed in the ignition chamber but as the equivalence ratio decreases, the difference is expected to be equal. The lower flame length values in the non-mixed state will be greater than the near-mixed state. Also, the cross-sectional area of the flame inside the chamber changes significantly both in length and width by changing the length of the inhomogeneity.

کلیدواژه‌ها [English]

  • Turbulent combustion
  • inhomogeneity
  • flame length
  • combustion chamber
  1. J. C. Barnes and A. M .Mellor, “Effects of unmixedness in pilotedlean premixed gas-turbine combustors,” Journal of Propulsion and Power, Vol. 14, 1998, pp. 967–973.
  2. T. W. Lee, M. Fenton and R. Shankland, “Effects of Variable Partial Premixing on Turbulent Jet Flame Structure,” Combustion and Flame, Vol. 109, No. 4, 1997, pp. 536-548.
  3. M. Mansour, “A Concentric Flow Conical Nozzle Burner for Highly Stabilized Partially Premixed Flames,” Combustion Science and Technology, Vol. 152, No. 1, 2000, pp. 115-145.
  4. B. Renou, E. Samson and A. Boukhalfa, “An experimental study of freely propagating turbulent propane/air flames in stratified inhomogeneous mixtures,” Combustion Science and Technology, Vol. 176, 2004, pp. 1867-1890.
  5. F. Seffrin, F. Fuest, D. Geyer and A. Dreizler, “Flow field studies of a new series of turbulent premixed stratified flames,” Combustion and Flame, Vol. 157, 2010, pp. 384-396.
  6. S. Meares, V. N. Prasad, G. Magnotti, R. S. Barlow and A. R. Masri, “Stabilization of piloted turbulent flames with inhomogeneous inlets,” Proceedings of the Combustion Institute, Vol. 35, 2015, pp. 1477–1484.
  7. A. R. Masri, “Partial premixing and stratification in turbulent flames,” Proceedings of the Combustion Institute,”  Vol. 35, 2015, pp. 1115–1136.
  8. K. Kleinheinz, T. Kubis, P. Trisjono, M. Bode and H. Pitsch “Computational study of flame characteristics of a turbulent piloted jet burner with inhomogeneous inlets,” Proceedings of the Combustion Institute,  Vol. 36, Issue 2, 2017, pp. 1747-1757.
  9. B. A. Perry, M. E. Mueller and A. R. Masri “A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets,” Proceedings of the Combustion Institute, Vol. 36, 2017, pp. 1767–1775.
  10. T. F. Guiberti, M. Juddoo, D. A. Lacoste, M. J. Dunn, W. L. Roberts and A. R. Masri, “ Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets,” Proceedings of the Combustion Institute, Vol. 36, 2017, pp. 1777–1784.
  11. S. Galindo, F. Salehi, M. J. Cleary and A. R. Masri, “MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity,” Proceedings of the Combustion Institute,  Vol. 36, Issue 2, 2017, pp. 1759-1766.
  12. M. S. Mansour, H. Pitsch, S. Kruse, M. F. Zayed, M. S. Senosy, M. Juddoo, J. Beeckmann and A. R. Masri, “A concentric flow slot burner for stabilizing turbulent partially premixed inhomogeneous flames of gaseous fuels,” Experimental Thermal and Fluid Science, Vol. 91, 2018, pp. 214–229.
  13. H. C. Cutcher, R. S. Barlow, G. Magnotti and A. R. Masri, “Turbulent flames with compositionally inhomogeneous inlets: Resolved measurements of scalar dissipation rates,” Proceedings of the Combustion Institute,  Vol. 36, Issue 2, 2017, pp. 1737-1745.
  14. M. S. Mansour, H. Pitsch, S. Kruse, M. F. Zayed, M. S. Senosy, M. Juddoo, J. Beeckmann and A. R. Masri, “A concentric flow slot burner for stabilizing turbulent partially premixed inhomogeneous flames of gaseous fuels,” Experimental Thermal and Fluid Science, Vol. 91, 2018, pp. 214–229.
  15. N. Kim and Y. Kim, “Multi-environment probability density function approach for turbulent partially-premixed methane/air flame with inhomogeneous inlets,” Combustion and Flame, Vol. 182, 2017, pp. 190–205.
  16. W. Jin, S. A. Steinmetz, M. Juddoo, M. J. Dunn, Z. Huang and A. R. Masri, “Effects of shear inhomogeneities on the structure of turbulent premixed flames,” Combustion and Flame, Vol. 208, 2019, pp. 63–78.
  17. B. E. Van doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numerical Heat Transfer, Vol. 7, 1984, pp. 147.
  18. K.Cheong, P. Li, F. Wang and J. Mi, “Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions,” Energy, Vol. 124, 2017, pp. 652-664.
  19. R. S. Barlow, A. N. Karpetis and J. H. Frank, Scalar Profiles and NO Formation in Laminar Opposed Flow Partially Premixed Methane/Air Flames, Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA,2001.
  20. http://combustion.berkeley.edu/Combustion_Laboratory/grimech, “Gri2.11 Chemistry and thermodynamic files,” Accessed 25.02.2018.
  21. D. Garréton and O. Simonin, “Aerodynamics of steady state combustion chambers and furnaces,” ASCF Ercoftac CFD Workshop, EDF Org, Chatou, France, 1994.
  22. C. V. da Silva, H. A. Vielmo and F. H. R. Franca, “Numerical Simulation of the Combustion of Methane and Air in a Cylindrical Chamber,” 18th International Congress of Mechanical Engineering, Ouro Preto, 2005.
  23. E. Oldenhof, M. J. Tummers, E. H. van Veen and D. J. E. M. Roekaerts. “Role of entrainment in the stabilisation of jet-in-hot-coflow flames,” Combustion and Flame, Vol. 158, 2011, pp. 1553–1563.
  24. A. E. Oldenhof, P. Sathiah and D. Roekaerts, “Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames using the Eddy Dissipation Concept Model for Turbulence–Chemistry Interaction,” Flow Turbulence Combust, Vol. 87, 2011, pp. 537–567.
  25. E. Oldenhof, M. J. Tummers, E. H. van Veen and  D. J. E. M. Roekaerts, “Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames,” Combustion and Flame, Vol. 157, 2010, pp. 1167–1178.
  26. H. Yang, Y. Feng, X. Wang, L. Jiang, D. Zhao, N. Hayashi, and H. Yamashita, “OH-PLIF investigation of wall effects on the flame quenching in a slit burner,” Proceedings of the Combustion Institute, Vol. 34, 2013, pp. 3379–3386.