بررسی تاثیر تعداد حفره بر بازده احتراقی و ضریب بازیافت فشار سکون در محفظه احتراق مافوق صوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 هیات علمی دانشگاه آزاد اسلامی واحد نجف آباد

چکیده

با توجه به این‌که پایداری شعله در موتورهای اسکرم‌جت از چالش‌های اساسی پیش‌روی توسعه‌ی این‌گونه موتورهاست، در مطالعه‌ی حاضر به بررسی عددی تاثیر حفره در محفظه احتراق مافوق صوت یک اسکرم‌جت پرداخته شده است. در این شبیه‌سازی دو بعدی از مدل اغتشاشی k-ɛ استاندارد و مدل احتراقی واکنشگاه نیمه مخلوط (PaSR) استفاده شده است. جریان هوا به‌صورت مافوق صوت و با عدد ماخ 2/05 به محفظه احتراق وارد می‌شود. سوخت هیدروژن نیز در شرایط صوتی و به‌طور متقاطع درون جریان هوا تزریق می‌شود. در این محفظه‌ احتراق، به منظور پایدارسازی شعله از حفره استفاده شده و تاثیر نحوه‌ قرارگیری حفره و تعداد حفره‌ها بر ساختار جریان، بازده احتراقی و ضریب بازیافت فشار سکون مورد مطالعه قرار گرفته است. نتایج حاصل نشان می‌دهد، با افزایش تعداد حفره‌ها از یک تا چهار، بازده احتراقی افزایش یافته اما ضریب بازیافت فشار سکون کاهش می‌یابد. برای پیکربندی با چهار حفره بازده احتراقی برابر 98% و ضریب بازیافت فشار سکون برابر 46/13% است که نسبت به پیکربندی تک‌حفره تقریباً با افزایش 26% بازده احتراقی و کاهش 10% ضریب بازیافت فشار سکون همراه است. بهترین عملکرد در پیکربندی‌های مورد مطالعه مربوط به محفظه احتراق با دو حفره موازی و دو پاشنده سوخت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of the number of cavity flame-holders on combustion efficiency and pressure recovery factor in a supersonic combustion chamber

چکیده [English]

In the present research work, computational simulation of the multi cavity scramjet combustor has been performed by using the two-dimensional compressible Reynolds-Averaged Navier Stokes (RANS) equations coupled with two equations standard k-ɛ turbulence model as well as PaSR model for combustion modeling. In this combustion chamber, the supersonic air with Mach number of 2.05 flows in the enclosure, and the transverse hydrogen fuel injection is employed at sonic condition. The cavity is used to stabilize the flame in the combustor and the effect of cavity location and also the number of cavities on flow structure, combustion efficiency, and pressure recovery factor are studied. The results show that by increasing the number of cavities from one to four, the combustion efficiency is increased but the pressure recovery factor decreases. For the four-cavity configuration, the combustion efficiency is around 98% and the pressure recovery factor is 46.13%, which shows 26% increase in the combustion efficiency and 10% decrease in the pressure recovery factor as compared with the single-cavity. In the considered configurations, the best performance is achieved by the parallel dual-cavity with two-injection combustor.

کلیدواژه‌ها [English]

  • Supersonic combustion
  • Scramjet
  • Hydrogen fuel
  • Cavity flame holder
  • combustion efficiency
1.   C. Segal, The Scramjet Engine: Processes and Characteristics, First Edition, New York, Cambridge University Press, 2009.
2.   K. N. Roberts and D. R. Wilson, Analysis and Design of a Hypersonic Scramjet Engine with a Starting Mach Number of 4.00, 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, USA, January 2009.
3.   M. Gruber, R. Baurle, K. Y. Hsu and T. Mathur, Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors,” Journal of Propulsion and Power, 17, 2001, pp. 146-153.
4.   T. Mathur, M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson and F. Billig, Supersonic Combustion Experiments with a Cavity-Based Fuel Injector,” Journal of Propulsion and Power, 17, 2001, pp. 1305-1312.
5.   A. Ben-Yakar and R. K. Hanson, Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview,” Journal of Propulsion and Power, 17, 2001, pp. 869-877.
6.   K. M. Kim, S. W. Baek and C. Y. Han, Numerical Study on Supersonic Combustion with Cavity-Based Fuel Injection,” Heat and Mass Transfer, 47, 2004, pp. 271-286.
7.   M. Ali and T. Fujiwara, A Numerical Study on the Mixing of Air and Hydrogen in a Scramjet Combustor,” The Aeronautical Journal, 109, 2005, pp. 325-335.
8.   C. C. Rasmussen, S. K. Dhanuka and J. F. Driscoll, Visualization of Flameholding Mechanisms in a Supersonic Combustor using PLIF,” Proceedings of the Combustion Institute, 31, 2007, pp. 2505-2512.
9.   Z. Cai, Y. Yang, M. Sun and Z. Wang, Experimental Investigation on Ignition Schemes of a Supersonic Combustor with the Rearwall-Expansion Cavity,” Acta Astronautica, 123, 2016, pp. 181-187.
10. R. Moradi, A. Mahyari, M. B. Gerdroodbary, A. Abdollahi and Y. Amini, Shape Effect of Cavity Flameholder on Mixing Zone of Hydrogen Jet at Supersonic Flow,” International Journal of Hydrogen Energy, 43, 2018, pp. 16364-16372.
11. H. Wang, Z. Wang, M. Sun and N. Qin, Combustion Characteristics in a Supersonic Combustor with Hydrogen Injection Upstream of Cavity Flameholder,” Proceedings of the Combustion Institute, 34, 2013, pp. 2073-2082.
12. Y. Zhao, J. Liang and Y. Zhao, Non-Reacting Flow Visualization of Supersonic Combustor Based on Cavity and Cavity–strut Flameholder,” Acta Astronautica, 121, 2016, pp. 282-291.
13. Y. X. Zhang, Z. G. Wang, M. B. Sun, Y. X. Yang and H. B. Wang,Hydrogen Jet Combustion in a Scramjet Combustor with the Rearwall-Expansion Cavity,” Acta Astronautica, 144, 2018, pp. 181-192.
14. T. Ukai, H. Zare-Behtash, E. Erdem, K. H. Lo, K. Kontis and S. Obayashi, Effectiveness of Jet Location on Mixing Characteristics inside a Cavity in Supersonic Flow,” Experimental Thermal and Fluid Science, 52, 2014, pp. 59-67.
15. H. Wang, Z. Wang, M. Sun and N. Qin, Large Eddy Simulation Based Studies of Jet-Cavity Interactions in a Supersonic Flow, Acta Astronautica, 93, 2014, pp. 182-192.
16. F. S. Billig, M. Lasky and R. C. Orth, Effects of Thermal Compression on the Performance Estimates of Hypersonic Ramjets, Journal of Spacecraft and Rockets, 5, 1968, pp. 1076-1081.
17. G. Choubey,Y. Devarajan, W. Huang, K. Mehar, M. Tiwari and K. M. Pandey, Recent Advances in Cavity-Based Scramjet Engine- a Brief Review, International Journal of Hydrogen Energy, 44, 2019,pp. 13895-13909.
18. X. P. Li, W. D. Liu, Y. Pan and S. J. Liu, Investigation on Ignition Enhancement Mechanism in a Scramjet Combustor with Dual Cavity, Journal of Propulsion and Power, 32, 2016, pp. 439-447.
19. H. Wang, Z. Wang, M. Sun and N. Qin, Large Eddy Simulation of a Hydrogen-Fueled Scramjet Combustor with Dual Cavity, Acta Astronautica, 108, 2014, pp. 119-128.
20. Y. Yang, Z. Wang, M. Sun and H. Wang, Numerical Simulation on Ignition Transients of Hydrogen Flame in a Supersonic Combustor with Dual-Cavity, International Journal of Hydrogen Energy, 41, 2016, pp. 690-703.
21. Y. Yang, Z. Wang, M. Sun, H. Wang and L. Li, Numerical and Experimental Study on Flame Structure Characteristics in a Supersonic Combustor with Dual-Cavity, Acta Astronautica, 117, 2015, pp. 376-389.
22. N. K. Mahto, G. Choubey, L. Suneetha and K. M. Pandey, Effect of Variation of Length-to-Depth Ratio and Mach Number on the Performance of a Typical Double Cavity Scramjet Combustor, Acta Astronautica, 128, 2016, pp. 540-550.
23. K. M. Pandey, G. Choubey, F. Ahmed, D. H. Laskar and P. Ramnani, Effect of Variation of Hydrogen Injection Pressure and Inlet Air Temperature on the Flow-Field of a Typical Double Cavity Scramjet Combustor, International Journal of Hydrogen Energy, 42, 2017, pp. 20824-20834.
24. G. Choubey and K. M. Pandey, Effect of Variation of Inlet Boundary Conditions on the Combustion Flow-Field of a Typical Double Cavity Scramjet Combustor, International Journal of Hydrogen Energy, 43, 2018, pp. 8139-8151.
25. Y. H. Wang, W. Y. Song and D. Y. Shi, Investigation of Flameholding Characteristics in a Kerosene-Fueled Scramjet Combustor with Tandem Dual-Cavity, Acta Astronautica, 140, 2017, pp. 126-132.
26. H. G. Weller, G. Tabor, H. Jasak and C. Fureby, A Tensorial Approach to Computational Continuum Mechanics using Object Orientated Techniques, Computers in Physics, 12, 1998, pp. 620-631.
27. A. A. Shekarian, S. Tabejamaat and Y. Shoraka, Effects of Incident Shock Wave on Mixing and Flame Holding of Hydrogen in Supersonic Air Flow, International Journal of Hydrogen Energy, 39, 2014, pp. 10284-10292.
28. A. A. Shekarian and S. Tabejamaat, Numerical Study of the Effect of an Incident Shock Wave on the Combustion of Transversal Hydrogen Jet in a Supersonic Flow, Fuel and Combustion, 8,2015, pp. 1-12. (In Persian)
29. J. O. Hinze, Turbulence, Second Edition, New York, McGraw Hill, 1975.
30. D. Veynante and L. Vervisch, Turbulent Combustion Modeling, Progress in Energy and Combustion Science, 28, 2002, pp. 193-266.
31. D. B. Spalding, Mixing and Chemical Reaction in Steady Confined Turbulent Flames, Proceedings of the Combustion Institute, 13, 1971, pp. 649-657.
32. J. Chomiak and A. Karlsson, Flame Liftoff in Diesel Sprays, Proceedings of the Combustion Institute, 26, 1996, pp. 2557-2564.
33. N. Nordin, Complex chemistry modeling of diesel spray combustion, PhD Thesis, Department of Applied Mechanics, Chalmers University of Technology, Goteborg, Sweden, 2001.
34. OpenFOAM 2.2.x/src/thermophysicalModels/chemistryModel/chemistryModel /chemistryModel/chemistryModel.C.
35. D. Chakraborty, P. J. Paul and H. Mukunda, Evaluation of Combustion Models for High Speed H2/Air Confined Mixing Layer using DNS Data, Combustion and Flame, 121, 2000, pp. 195-209.
36. Z. Gao and C. Lee, A Numerical Study of Turbulent Combustion Characteristics in a Combustion Chamber of a Scramjet Engine, Science China Technological Sciences, 53, 2010, pp. 2111-2121.
37. M. C. Murty, R. D. Mishal and D. Chakraborty, Numerical Simulation of Supersonic Combustion with Parallel Injection of Hydrogen Fuel,Defence Science Journal, 60, 2010, pp. 465-475.
38. W. Huang, L. Ma, M. Pourkashanian, D. B. Ingham, S. b. Luo, J. Liu and Z. G. Wang, Flow-Field Analysis of a Typical Hydrogen-Fueled Dual-Mode Scramjet Combustor, Journal of Aerospace Engineering, 25, 2012, pp. 336-346.
39. A. M. Tahsini and S. Tadayon Mousavi, Investigating the Supersonic Combustion Efficiency for the Jet-in-Cross-Flow, International Journal of Hydrogen Energy, 40, 2015, pp. 3091-3097.
40. B. Savard and G. Blanquart, A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames,Combustion and Flame, 161, 2014, pp. 1547-1557.
41. J. Li, Z. Zhao, A. Kazakov and F. L. Dryer, An Updated Comprehensive Kinetic Model of Hydrogen Combustion, International Journal of Chemical Kinetics, 36, 2004, pp. 566-575.
42. N. M. Marinov, C. K. Westbrook and W. J. Pitz, Detailed and global chemical kinetics model for hydrogen, 8th International Symposium on Transport Properties, San Francisco, Canada, October 1995.
43. W. Lu, Q. Zhansen and G. Liangjie, Numerical Study of the Combustion Field in Dual-Cavity Scramjet Combustor, Procedia Engineering, 99, 2015, pp. 313-319.