بررسی اثرات زیست محیطی تولید بیواتانول از ضایعات سیب زمینی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده مهندسی زراعی، دانشگاه کشاورزی و منابع طبیعی ساری

2 گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری- ساری ایران

3 استاد مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران

4 دانشگاه تربیت مدرس

چکیده

نگرانی از افزایش آلودگی محیط زیست و افزایش گازهای گلخانه‌ای، حاصل از استفاده سوخت‌های فسیلی، محققان را به سمت استفاده از انرژی‌های تجدیدپذیر سوق داده است. در پژوهش حاضر به بررسی اثرات زیست محیطی تولید سوخت بیواتانول از ضایعات سیب‌زمینی از مرحله کشاورزی تا مرحله تولید بیواتانول (خردکردن و له‌کردن و تولید مالت، هیدرولیز آنزیمی، تخمیر و آبگیری) پرداخته شد. بررسی زیست‌محیطی داده‌های بدست آمده با استفاده از روش ارزیابی چرخه حیات در قالب 15 گروه تاثیر و 4 شاخص نهایی انجام شد و تابع کارکردی آن تولید یک کیلوگرم بیواتانول در نظر گرفته شد. نتایج بدست آمده از گروه‌های تاثیر در دو مرحله کشاورزی و تولید بیواتانول نشان داد که مرحله کشاورزی در تمامی گروه‌های تاثیر به جز گروه تاثیر سرطان‌زایی، مقادیر بالاتری نسبت به مراحل تولید بیواتانول در کارگاه (تولید مالت، هیدرولیز، تخمیر و آبگیری) دارد. همچنین، نتایج نشان داد بالاترین سهم در ایجاد گروه‌های تاثیر مختلف مربوط به مصرف انرژی الکتریسیته، فولاد، ماشین‌های کشاورزی، نیتروژن، فسفات و انتشار آلاینده‌های مستقیم از سطح مزرعه و کارگاه است. مقایسه بین شاخص‌های نهایی مختلف نشان می‌دهد که شاخص سلامتی انسان‌ها به ازای تولید یک کیلوگرم سوخت بیواتانول 9/90 برابر نسبت به کیفیت اکوسیستم، 1/28 برابر نسبت به تغییرات اقلیم و 1/48 برابر نسبت به منابع دارای اثرات مخرب زیست‌محیطی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of environmental impact of bioethanol production from potato waste

نویسندگان [English]

  • Ali Motevali 1
  • MIlad Teymori-Omran 2
  • برات قبادیان 3
  • gholamhassan najafi 4
1 Department of Mechanical Engineering, Biological System, University of Agricultural Sciences and Natural Resources
2 Department of Mechanical Engineering, Biological System, University of Agricultural Sciences and Natural Resources
3 - Department of Biosystem Engineering, Tarbiat Modarres University, Tehran, Iran
4 Mechanics of biosystem engineering, Tarbiat Modares University
چکیده [English]

Concerns about increasing environmental pollution and increasing greenhouse gas emissions from fossil fuels have led researchers to use renewable energy. In this research, the environmental impacts of bioethanol production from potato waste were investigated from the agricultural stage to the production stage of bioethanol (crushing and malt production, enzymatic hydrolysis, fermentation and dehydration). Investigation of environmental impact of the data collection was done using a life cycle assessment method in the form of 15 impact groups and 4 final indicators, and its functional unit was considered to produce 1 kg of bioethanol. The results obtained from the impact groups in two stages of agriculture and bioethanol production showed that the agricultural stage in all the affected groups except the carcinogenicity group had higher values than the stages of bioethanol production (malt production, hydrolysis, fermentation and dewatering). Also the results showed that the highest contribution to creating different impact groups is related to energy consumption of electricity, steel, agricultural machinery, nitrogen, phosphate and direct emission of pollutants from the field and manufactory. The comparison between different environmental endpoints indicator shows that the human health index is 9.90 times higher than ecosystem quality, 1.28 times higher than climate change and 1.48 times higher than that of resources with destructive effects on bioethanol fuel production.

کلیدواژه‌ها [English]

  • Environmental Impact
  • Bioethanol
  • Potato waste
  • life cycle assessment
  1. A. G. Bayrakci Ozdingis and G. Kocar, “Current and future aspects of bioethanol production and utilization in Turkey,” Renewable and Sustainable Energy Reviews, 81, 2018, pp. 2196–2203.
  2. A. Azevedo, F. Fornasier, M. Silva Szarblewski, R .C. Souza Schneider, M. Hoeltz and D. Souza, “Life cycle assessment of bioethanol production from cattle manure,” Journal of Cleaner Production, 162, 2017, pp. 1021–1030.
  3. G. Rebitzer, T.  Ekvall, R. Frischknecht, D.  Hunkeler, G. Norris, T. Rydberg and D. W.  Pennington, “Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications,” Environment International, 30, 2004, pp. 701–720.
  4. F. Brentrup, J. Küsters, J. Lammel, P. Barraclough and H. Kuhlmann, “Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems,” European Journal of Agronomy, 20, 2004, pp. 265–279.
  5. M. Cellura, S. Longo and M. Mistretta, “Life Cycle Assessment (LCA) of protected crops: an Italian case study,” Journal of Cleaner Production, 28, 2012, pp. 56–62.
  6. J. Kenthorai Raman and E. Gnansounou, “LCA of bioethanol and furfural production from vetiver,” Bioresource Technology, 185, 2015, pp. 202–210.
  7. B. Kamkar and M. Mahdavi Damghani, Principles of sustainable agriculture, Publications University of Mashhad, 2008.
  8. C. G.Kim, Developing Policies for Agriculture and the Environment, Food and Fertilizer Technology Center, Korea Rural Economic Institute, 2001, Working Paper.
  9. C. M. Gasol, X. Gabarrell, A. Anton, M. Rigola, J. Carrasco, P. Ciria and J. Rieradevall, “Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe,” Biomass and Bioenergy, 31, 2007, pp. 543–555.
  10. T. Nemecek and T. kagi, Life cycle inventories of agricultural production systems, data Ecoinvent Center, V2.0, Ecoinvent Report (No.15 Zurich and Debendorf Swit zerlano), 2007.
  11. F.Brentrup, J. Küsters, J. Lammeland H. Kuhlmann, “Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector,” international journal of life cycle assessment, 5, 2000, pp. 349– 357.
  12. S. Papong, C. Rewlay-ngoen, N. Itsubo and P. Malakul, “Environmental life cycle assessment and social impacts of bioethanol production in Thailand,” Journal of Cleaner Production,157, 2017, pp. 254–266.
  13. H. Bayraktar, “Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines,” Renewable energy, 30, 2005, pp. 1733–1747.
  14. A. Avilés Martínez, J. Saucedo-Luna, J. G. Segovia-Hernandez, S. Hernandez, F. I. Gomez-Castro and A. J. Castro-Montoya, “Dehydration of bioethanol by hybrid process liquid–liquid extraction/extractive distillation,” Industrial & engineering chemistry research, 51, 2011, pp. 5847–5855.
  15. T.Tsuru and J. Wang, Pervaporation. Kirk-Othmer Encyclopedia of Chemical Technology, 2010.
  16. A. A. Kiss, J. David and P. C. Suszwalak, “Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns,” Separation and Purification Technology, 86, 2012, pp. 70–78.
  17. D. M. Leo, Adsorption of water and ethanol vapors on 3A and 4A molecular sieve zeolites, Doctoral dissertation, State University of New York at Buffalo,School of Engineering and Applied Sciences, 2007.
  18. A. Devi Chintagunta, S. Jacoband R. Banerjee, “Integrated bioethanol and biomanure production from potato waste,” Waste Management, 49, 2016, pp. 320–325.
  19. D. Arapoglou, Th. Varzakas, A. Vlyssides and C. Israilides. “Ethanol production from potato peel waste (PPW),” Waste Management, 30, 2010, pp. 1898–1902.
  20. B. Jeddou Khawla, M. Sameh, G. Imen, F. Donyes, G. Dhouha, E. Ghorbel Raoudha and N. Oumèma ,“Potato peel as feedstock for bioethanol production: A comparisonof acidic and enzymatic hydrolysis,” Industrial Crops and Products, 52, 2014, pp. 144–149.
  21. L. Wang, J. Littlewood and R. J. Murphy, “Environmental sustainability of bioethanol production from wheat straw in the UK,” Renewable and Sustainable Energy Reviews, 28, 2013, pp. 715–725.
  22. S. Papong, C. Rewlay-ngoen, N. Itsubo and P. Malakul. “Environmental life cycle assessment and social impacts of bioethanol production in Thailand,” Journal of Cleaner Production, 157, 2017, pp. 254–266.
  23. I. Muñoz, K. Flury, N. Jungbluth, G Rigarlsford, L. Milài Canals and H. King. “Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks,” The International Journal of Life Cycle Assessment, 19, 2014, pp. 109–119.
  24. A.L .Borrion, M C. McManus and G P. Hammond, “Environmental life cycle assessment of bioethanol production from wheat straw” Biomass and Bioenergy, 47, 2012, pp. 9–19.
  25. M. Soleymani, A. Keyhani and M. Omid, “Life cycle assessment bioethanol production from Sugarcane in Iran,” Journal of agricultural engineering, 40, 2018, pp. 13–27.
  26. C. Pieragostini, P. Aguirre, M.C. Mussati, “Life cycle assessment of corn based ethanol production in Argentina,” Science of the Total Environment, 472, 2014, pp. 212–225.
  27. M. Morales, J. Quintero, R. Conejeros and G. Aroca, “Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance,” Renewable and Sustainable Energy Reviews, 42, 2015, pp. 1349–1361.
  28. K. Gerbrandt, P. Lin Chu, A. Simmonds, K. A. Mullins, H. L.  MacLean, W. M. Griffin and B. A. Saville, “Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use,” Current Opinion in Biotechnology, 38, 2016, pp. 63–70.
  29. E. I. Wiloso, R. Heijungs and G. R. Snoo, “LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice,” Renewable and Sustainable Energy Reviews, 16, 2012, pp. 5295–5308
  30. P. Goglio, E. Bonari and M. Mazzoncini, “LCA of cropping systems with different external input levels for energetic purposes,” Biomass and bioenergy, 42, 2012, pp. 33–42.
  31. W. Shuai, N, Chen, B. Li, Zhou D and J. Gao,“Life cycle assessment of common reed (Phragmites australis (Cav) Trin.ex Steud) cellulosic bioethanol in Jiangsu Province, China,” Biomass and Bioenergy, 92, 2016, pp. 40–47.
  32. J. Botero Agudelo, H. Castaño Peláez and C. Naranjo Merino, “Life Cycle Assessment for bioethanol produced from cassava in Colombia,” Producción + Limpia, 6, 2012, pp. 69–77.
  33. P. N. Aguilar-Sánchez, F. S. avarro-Pineda, J. C. Sacramento-Rivero and L. F. Barahona-Pérez. “Life-cycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico,” Clean Technologies Environmental Policy, 20, 2018, pp. 1685–1696.
  34. S. S. Farahani and M. A. Asoodar, “Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran,” Environmental Science and Pollution Research, 24, 2017, pp. 22547–22556.
  35. J. Shadbahr, Y. Zhang and F. Khan, “Life Cycle Assessment of Bioethanol Production from Woodchips with Modifications in the Pretreatment Process” Applied Biochemistry Biotechnology, 175, 2015, pp. 1080-1091.
  36. H. Cai, J.B. Dunn, Z. Wang, J. Hanand M. Q. Wang. “Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States,” Biotechnology Biofuels, 6, 2013, pp. 141.
  37. F, Baiat, “Assessment Dissipation factor at different stages of agricultural products and ways to deal with it,” conference methods prevention loss scientific resources, pp. 216–226, The Academy of Sciences of the Islamic Republic of Iran, Tehran, 2004. (in Persian)
  38. M. M. Jowker, “The importance of horticultural extension in reducing postharvest losses in Iran,” ISHS Acta horticulture 627, IV international symposium on horticultural Education, Extension and Training, Perth, Australia, 2005.
  39. M. Yosef allahi, R. Kamiab Kalantari and A, Dirkevandi , “Investigating the Possibility of using Potato Mineral Silage in Feeding Animal Ruminants” Applied Scientific Conference on the Use of Agricultural, Urban and Industrial Wastes in Poultry and Aquatic Diets, Tabriz university, Tabriz, 2012.(in Persian)
  40. M. Finkbeiner, A. Inaba, R.B.H. Tan, K. Christiansenand H.J. Klüppel, “The new international standards for life cycle assessment,” ISO 14040 and ISO 14044, International Journal of Life Cycle Assessment, 1, 2006, pp. 80–85.
  41. T. Nemecek, D. Dubois, O. Huguenin-Elie and G. Gaillard, “Life cycle assessment of Swiss farming systems: I. Integrated and organic farming,” Agricultural Systems, 104, 2011, pp. 217–232.
  42. Intergovernmental Panel on Climate Change (IPCC), Guidelines for national greenhouse gas inventories. In: Eggleston, H.S., Buendia, Miwa K., Ngara, T., Tanabe, K. (Eds.), Prepared by the National Greenhouse Gas Inventories Programme. Japan: IGES, 2006. http://www.ipccnggip.iges.or.jp/public/2006gl/index.htm.
  43. F.  Van den Berg, R.  Kubiak, W. G. Benjey, M. S. Majewski, S. R. Yates, G. L. Reeves and A. M. A. Van der Linden. “Emission of pesticides into the air,” Water Air and Soil Pollution, 115, 1999, pp. 195–218.
  44. SH. Mousavi-Avval, S. Rafiee, M. Sharifi, S. Hosseinpour, B. Notarnicola and G. Tassielli, et al., “Use of LCA indicators to assess Iranian rapeseed production systems with different residue management practices,” Ecological Indicator, 80,  2017, pp. 31–9.
  45. M. Abassian, Design, Manufacture and Evaluation of Laboratory Apparatus for the Production of Sugar from Potato Waste for the Production of Bioethanol. MSc Thesis, Mechanical & Biosystems Engineering Department, Tarbiat Modares University, Tehran, 2012. (In Persian)
  46. P. Roy, D. Nei, T. Orikasa, Q. Xu, H. Okadome, N. Nakamuraand T. Shiina, “A review of life cycle assessment (LCA) on some food products,” Journal of Food Engineering, 90, 2009, pp. 1–10.
  47. J. Jiao, J. Li and Y. Bai, “Uncertainty analysis in the life cycle assessment of cassava ethanol in China,” Journal of Cleaner Production, 206, 2019, pp. 438–451.
  48. M. Wang, Y. Shi, X. Xia, D. Li and Q. Chen. “Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato,” Bioresource Technology, 133, 2013, pp. 285–292.