بررسی و ارزیابی خواص دی‌الکتریک بیودیزل کرچک با استفاده از امواج مایکروویو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس، تهران، ایران

2 /گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس.

3 مهندسی برق، مرکز تحقیقات مخابرات ایران، تهران

چکیده

گرایش به تحقیق پیرامون تولید و کاربرد انرژی­های تجدیدپذیر، ازجمله بیودیزل، به­منظور کاهش گاز­های گلخانه­ای و آلایندگی­های ناشی از سوخت­های فسیلی، یکی از مهم­ترین مواردی است که در سیاست­های جهانی به آن پرداخته شده است. خواص دی­الکتریک (έ، ثابت دی الکتریک و ″ε، فاکتور اتلاف دی الکتریک) مواد نقش عمده­ای در طراحی سامانه مایکروویو و فرایند تولید و فرآوری بیودیزل دارند.هدف از این پژوهش بررسی و ارزیابی خواص دی­الکتریک بیودیزل کرچک در مقیاس آزمایشگاهی با استفاده از فناوری پیشرفته مایکروویو و بررسی ارتباط بین پارامترهای مختلف موثر آن است. در این تحقیق، اثرات زمان واکنش (1، 3 و 9 دقیقه)، غلظت کاتالیزور (1، 1/5 و 2 درصد وزن روغن) و تغییرات دما (30، 45 و 60 درجه سلسیوس) مورد مطالعه قرار گرفت. از سامانه بازتابش پروب در فرکانس MHz 2450 برای اندازه­گیری خواص دی­الکتریک استفاده شد. نتایج نشان داد که با افزایش زمان واکنش و کاهش دما، مقادیر ثابت دی­الکتریک افزایش و با کاهش غلظت کاتالیزور، دما و زمان واکنش، فاکتور اتلاف دی­الکتریک کاهش می­ یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dielectric Properties of Castor-based Biodiesel Using Microwave

نویسندگان [English]

  • Mohammad Zarein 1
  • Mohammad Hadi Khoshtaghaza 2
  • Hossein Ameri Mahabadi 3
1 Mechanical & Biosystems Engineering, Tarbiat Modares University (TMU), Tehran, Iran
2 Biosystem Engineering Dept., College of Agriculture, Tarbiat Modares University
3 Electrical Engineering Department, Iran Telecommunication Research Center (ITRC), Tehran, Iran.
چکیده [English]

The tendency toward research on the production and application of renewable energy, such as biodiesel, to reduce greenhouse gases and emissions of fossil fuels, is one of the most important issues in the world policies which has been discussed. Dielectric properties (ε’, dielectric constant and ε", dielectric loss factor) of materials play a major role in the microwave design and process of biodiesel production. The purpose of this research is to investigate and evaluate the biodiesel's dielectric properties in a pilot-scale using microwave technology and the relationship between its various effective parameters. In this study, the effects of reaction time (1, 3 and 9 minutes), catalyst concentration (1, 1.5 and 2% of oil weight) and temperature changes (30, 45 and 60°C) were studied. The probe reflection system was used at a frequency of 2450 MHz to measure the dielectric properties. The results showed that, with increasing reaction time and decreasing temperature, the dielectric constant values increased, and by decreasing catalyst concentration, temperature and reaction time, the dielectric loss factor decreased.
 
 

کلیدواژه‌ها [English]

  • : Castor Biodiesel
  • Production Process
  • Dielectric Properties
  • Frequency
  • Catalyst
  1. B. Ghobadian, “A Comprehensive Review of the Biodiesel Production and Purification Technologies in Iran,” Second International Congress on Biodiesel: The Science and Technologies, Munch, Germany, November 2009.
  2. B. Ghobadian and H. Rahimi, “Biofuels: Past, Present and Future Perspective,” Fourth International Iran and Russia Conference, Shahrekord, Iran, September 2004.
  3. H. Fukuda, A. Kondo and H. Noda, “Biodiesel Fuel Production by Transesterification of Oils,” Journal of Bioscience and Bioengineering, 92, 2001, pp. 405-416.
  4. M. Ijaz, Kh.H. Bahtti, Z. Anwar, U.F. Dogar and M. Irshad, “Production, Optimization and Quality AssessmentofBiodiesel from Ricinus Communis l. Oil,” Journal of Radiation Research and Applied Sciences, 9, 2016, pp. 180-184.
  5. M. Balat and H. Balat, “A Critical Review of Bio-Diesel as a Vehicular Fuel,” Energy Conversion and Management, 49, 2008, pp. 2727-2741.
  6. Hu. Shengyang, Y. Guan, Y. Wang and H. Han, “Nanomagnetic catalyst KF/CaO-Fe3O4 for biodiesel production,” Applied Energy, 88, 2011, pp. 2685-2690.
  7. G. Karavalakis, G. Anastopoulos and S. Stournas, “Tetramethylguanidine as an efficient catalyst for transesterification of waste frying oils,” Applied Energy, 88, 2011, pp. 3645-3650.
  8. M. Kee Lam, K. Teong Lee and A. R. Mohamed, “Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review,” Biotechnology Advances, 28, 2010, pp. 500-518.
  9. L. Pboey, G. Pragas Maniama and S. Abd Hamid, “Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review,” Chemical Engineering Journal, 168, 2011, pp. 15-22.
  10. D. Zuo, J. Lane, D. Culy, M. Schultz, A. Pullar and M. Waxman, “Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production,” Applied Catalysis B: Environmental, 129, 2013, pp. 342-350.
  11. K. Hee Kay and S. Md Yasir, “Biodiesel Production from Low Quality Crude Jatropha Oil using Heterogeneous Catalyst,” APCBEE Procedia, 3, 2014, pp. 23-27.
  12. W. Haitang, J. Zhang, Q. Wei, J. Zheng and J. Zhang, “Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts,” Fuel Processing Technology, 109, 2013, pp. 13-18.
  13. G. Chen and B. Fang, “Preparation of solid acid catalyst from glucose-starch mixture for biodieselproduction,” Bioresource Tech., 102, 2011, pp. 2635-2640.

14. M. Kouzua, A. Nakagaito and J. Hidaka, “Preesterification of FFA in plant oil transesterified into biodiesel with the help of solid acid catalysis of sulfonated cation-exchange resin,” Applied CatalysisA: General, 405, 2011, pp. 36- 44.

  1. M. E. Borges and L. Diaz, “Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review,” Renewable and Sustainable Energy Reviews, 16, 2012, pp. 2839-2849.

16. Y. Wang, F. Zhang, S. Xu, L. Yang, L. Dianqing, D. G. Evans and D. Xue, “Preparation of macrospherical magnesia-rich magnesium aluminate spinel catalysts for methanolysis of soybean oil,” Chem. Eng. Science, 63, 2008, pp. 4306-4312.

  1. E. Viola, A. Blasi, V. Valerio, I. Guidi, F. Zimbardi, G. Braccio and G. Giordano, “Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis,” Catalysis Today, 179, 2012, pp. 185-190.
  2. P. A. Soares Dias, J. Bernardo, P. Felizardo and J. M. Neiva Correia, “Biodiesel production by soybean oil methanolysis over SrO/MgO catalysts The relevance of the catalyst granulometry,” Fuel Processing Tech., 102, 2012, pp. 146-155.
  3. Qiu. Fengxian, Li. Yihuai, D. Yang, Li. Xiaohua and S. Ping, “Heterogeneous solid base nanocatalyst: Preparation, characterization and application in biodiesel production,” Bioresource Technology, 102, 2011, 4150-4156.

20. M. E. Borges and L. Diaz, “Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review,” Renewable and Sustainable Energy Reviews, 16, 2012, pp. 2839-2849.

21. A. P. Singh Chouhan and A. K. Sarma, “Modern heterogeneous catalysts for biodiesel production: A comprehensive review,” Renewable and Sustainable Energy Reviews, 15, 2011, pp. 4378-4399.

  1. N. Viriya-empikul, P. Krasae, W. Nualpaeng, B. Yoosuk and K. Faungnawakij, “Biodiesel production over Cabased solid catalysts derived from industrial wastes,” Fuel, 92, 2012, pp. 239-244.

23. P. Nair, B. Singh, S. N. Upadhyay and Y. C. Sharma, “Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst,” Journal of Cleaner Production, 29, 2012, pp. 82-90.

24. P. C. Lew, K. Hemanathan and P. Z. Vasudeo, “Enzymatic biodiesel: Challenges and opportunities,” Applied Energy, 119, 2014, pp. 497-520.

25. M. Hajar, S. Shokrollahzadeh, F. Vahabzadeh and A. Monazzami, “Solvent-free methanolysis of canola oil in a packed-bed reactor with use of Novozym 435 plus loofa,” Enzyme and Microbial Tech., 45, 2009, pp. 188-194.

26. D. P. Muley and D. Boldor, “Investigation of Microwave Dielectric Properties of Biodiesel Components,” Bioresource Technology, 127, 2013, pp. 165-174.

27. R. M. Balabin, E. I. Lomakina and R. Z. Safieva, “Artificial Neural Network (ANN) Approach to Biodiesel Analysis: Analysis of Biodiesel Density, Kinematic Viscosity, Methanol and Water Contents usingNear Infrared (NIR) Spectroscopy,” Fuel, 90, 2011, pp. 2007-2015.

28.M. E. Tat and J. H. Van Gerpen, “Biodiesel Blend Detection with a Fuel Composition Sensor,”Applied Engineering Agriculture, 19, 2003, pp. 125-131.

29. A. Biswas, A. Adhvaryu, D. G. Stevenson, B. K. Sharma,J. L. Willet and S. Z. Erhan, “Microwave Irradiation Effects on the Structure, Viscosity, Thermal Properties and Lubricity of Soybean oil,” Industrial Crops and Products, 25, 2007, pp. 1-7.

30.M. Zarein, Dielectric Constant Measuring of Potato using Microwave, MSc Thesis, Mechanical & Biosystems Engineering Department, Tarbiat Modares University, Tehran, 2012. (In Persian)

31.S.O. Nelson, “Dielectric Spectroscopy in Agriculture,” Journal of Non-Crystalline Solids, 351, 2005, pp. 2940-2944.

32.S.O. Nelson, W. Guo and S. Trabelsi, “Investigation of Dielectric Sensing for Fruit Quality Determination,” IEEESensors Applications Symposium, Atlanta, USA, 2008.

33. J. Cheeke and N. Davis, Fundamentals and Applications of Ultrasonic Waves, Second Edition, Florida, CRC Press, 2002.

34.E. Fayyazi, Biodiesel Fuel Production using Ultrasonic System, MSc Thesis, Mechanical & Biosystems Engineering Department, Tarbiat Modares University, Tehran, 2012. (In Persian)

35.M.S. Venkatesh and G.S.V. Raghavan, “An Overview of Dielectric Properties Measuring Techniques,” Canadian Biosystem Engineering, 47, 2005, pp. 15-30.