تعیین توزیع شعاعی دما و سرعت در شعله به وسیله ترموکوپل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پیشرانش، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

2 خیابان ازادی- دانشگاه صنعتی شریف- دانشکده هوافضا

3 واحد احتراق، شرکت مهندسی و ساخت توربین مپنا(توگا)

چکیده

امروزه، استفاده از ترموکوپل با جنس مقاوم و نقطه ذوب بالا به­ عنوان ابزاری کارآمد و ارزان برای اندازه­ گیری دمای گازهای داغ در احتراق استفاده می­شود. اندازه­گیری دما توسط ترموکوپل دارای خطای ذاتی ناشی از اتلاف تابشی و هدایتی است و لازم است این خطا اصلاح شود. در این پژوهش، ابتدا، با استفاده از روش عددی ترموکوپل مدل­سازی  می­ شود و صحت کد اولیه، با مقایسه نتایج پژوهش­ های پیشین، اعتبارسنجی می‌شود‌. سپس، اثر، قطر ترموکوپل و سرعت متوسط جریان بر مقدار خطای ترموکوپل بررسی می ­شود. نتایج نشان می­دهد، با افزایش قطر ترموکوپل از 5/0 به 1 میلی­متر، خطا 50 درصد افزایش یافته و با افزایش سرعت متوسط جریان از 1 به 5 متر بر ثانیه، خطا 41 درصد کاهش می یابد. در مقایسه با داده­ های یک کار تجربی، نتایج مدل­سازی ترموکوپل نشان می­ دهد که بیشینه مقدار خطا برای ترموکوپل 300 و 500 میکرونی در شرایط مورد بررسی به­ ترتیب برابر 30/8 و 39/6 درصد است. در ادامه پژوهش، الگوریتمی به­ منظور محاسبه توزیع شعاعی همزمان دما و سرعت جریان پیشنهاد شده و نتایج بیانگر دقت قابل قبول این الگوریتم برای شرایط جریان با دمای بالاست. نتایج مربوطه نشان می­دهد که خطای الگوریتم 2 درصد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of radial distribution of flame temperature and flame velocity by the thermocouple

نویسندگان [English]

  • Mohammad Javad Akbari 1
  • azadeh kebriaee 2
  • Alireza Ranjbaran 3
1 Aerospace Engineering Department, Shraif University of Technology
2 خیابان ازادی- دانشگاه صنعتی شریف- دانشکده هوافضا
3 Combustion Division, Tuga
چکیده [English]

Today, the use of resistant and high melting point thermocouples is considered as an efficient and inexpensive tool for measuring the temperature of hot gases produced by combustion. Temperature measurement by thermocouples has inherited errors due to the radiation loss and conduction loss. Therefore, it is necessary to correct this error. In this research, the thermocouple is firstly modeled using a numerical method. The validity of the original code is accredited by comparing the results with a similar previous study. Then, the effects of thermocouple diameter and average flow velocity are investigated on the thermocouple error. The error increases about 50% with increasing the thermocouple diameter from 0.5 to 1 mm. Besides, the error decreases about 41% with increasing the average velocity from 1 to 5 m/s. Based on a previous experimental study, the thermocouple modeling results indicate that the maximum errors for thermocouples with diameter of 300 and 500 microns are 30.8% and 39.6% in these conditions, respectively. In the following, a novel comprehensive solution is suggested to calculate the simultaneous distribution of temperature and velocity. Its results confirm that this algorithm has acceptable accuracy for high temperature flow conditions.

کلیدواژه‌ها [English]

  • Thermocouple
  • Flame temperature distribution
  • Correcting measurement error
  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Vol. 3, Amsterdam, Netherlands, Gordon and Breach Publisher, 1996.
  2. A. H. Khalid and K. Kontis, Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors, 8, No. 9, 2008, pp. 5673-5744.
  3. C. R. Shaddix, Correcting thermocouple measurements for radiation loss: a critical review,” Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, New Mexico, 1999.
  4. G. L. Selman and R. Rushforth, The Stability of Metal-sheathed Platinum Thermocouples, Platinum Metals Review, 15, No. 3, 1971, pp. 82-89.
  5. A. G. Tereshchenko, D. A. Knyaz’kov, P. A. Skovorodko, A. A. Paletsky, and O. P. Korobeinichev, Perturbations of the flame structure due to a thermocouple. I. Experiment, Combustion, Explosion, and Shock Waves, 47, No. 4, 2011, pp. 403-414.
  6. P. A. Skovorodko, A. G. Tereshchenko, A. A. Paletsky, D. A. Knyaz’kov, and O. P. Korobeinichev, Perturbations of the flame structure due to a thermocouple. II. Modeling, Combustion, Explosion, and Shock Waves, 47, No. 4, 2011, pp. 414-426.
  7. D. Bradley and J. K. Matthews,Measurement of High Gas Temperatures with Fine Wire Thermocouple,Journal of Mechanical Engineering Science, 10, No. 4, 1968, pp. 299-305.
  8. A. Sato, K. Hashiba, M. Hastani, S. Sugiyama, and J. Kimura, A correctional calculation method for thermocouple measurements of temperatures in flames, Combustion and Flame, 24, 1975, pp. 35-41.
  9. M. Katsuki , Y. Mizutani and Y. Matsumoto, An improved thermocouple technique for measurement of fluctuating temperatures in flames, Combustion and Flame, 67, 1987, pp. 27-36.
  10. D. Bradley, A. K. C. Lau and M. Missaghi, Response of Compensated Thermocouples to Fluctuating Temperatures: Computer Simulation, Experimental Results and Mathematical Modelling, Combustion Science and Technology, 64, 1989, pp. 119-134.
  11. M. Tagawa and Y. Ohta,Two-thermocouple probe for fluctuating temperature measurement in combustion Rational estimation of mean and fluctuating time constants, Combustion and Flame, 109, 1997, pp. 549-560.
  12. P. C. Hung, G. Irwin, R. Kee, and S. McLoone, Difference equation approach to two-thermocouple sensor characterization in constant velocity flow environments, Review of Scientific Instruments, 76, No. 2, 2005, p. 024902.
  13. G. E. Daniels, Measurement of gas temperature and the radiation compensating thermocouple, Journal of Applied Meteorology, 7, No. 6, 1968, pp. 1026-1035.
  14. D. S. De, Measurement of flame temperature with a multi-element thermocouple, Journal of the Institute of Energy, 54, 1981, pp. 113-16.
  15. F. H. Holderness, J. R. Tilston, and J. J. MacFarlane, Electrical Compensation for Radiation Loss in Thermocouples, National Gas Turbine Establishment, Note No. NT, 1969, p. 758.
  16. S. Brohez, C. Delvosalle, and G. Marlair, A two-thermocouple probe for radiation corrections of measured temperatures in compartment fires, Fire Safety Journal, 39, No. 5, 2004, pp. 399-411.
  17. R. Lemaire and S. Menanteau, Assessment of radiation correction methods for bare bead thermocouples in a combustion environment, International Journal of Thermal Sciences, 122, 2017, pp. 186-200.
  18. V. Hindasageri, R. P. Vedula, S. V. Prabhu, “Thermocouple Error Correction for Measuring the Flame Temperature with Determination of Emissivity And Heat Transfer Coefficient,” Review of Scientific Instruments, 84, No. 2, 2013, p. 024902.
  19.  S. C. Kim, A. Hamins, M. F. Bundy, G. H. Ko and E. L. Johnsson. Analysis of thermocouple behavior in compartment fires, Fire Safety Science, 7, 2007, pp. 136-136.
  20.  S. Krishnan, B. M. Kumfer, W. Wu, J. Li, A. Nehorai and R. L. Axelbaum, “An approach to thermocouple measurements that reduces uncertainties in high-temperature environments,” Energy & Fuels, 29, No. 5, 2015, pp. 3446-3455.
  21.  I. L. Roberts, J. E. R. Coney, B. M. Gibbs, “Estimation of Radiation Losses from Sheathed Thermocouples,” Applied Thermal Engineering, 2011, 31, No. 14-15, pp.  2262-2270.
  22.  Z. Xu, X. Tian and H. Zhao, “Tailor-making thermocouple junction for flame temperature measurement via dynamic transient method,” Proceedings of the Combustion Institute, 36, No. 3, 2017, pp. 4443-4451.
  23. S. C. R. Dennis, J. D. A. Walker and J. D. Hudson, “Heat transfer from a sphere at low Reynolds numbers,” Journal of Fluid Mechanics, 60, No. 2, 1973, pp. 273-283.
  24. T. H. Van der Meer, “Stagnation point heat transfer from turbulent low Reynolds number jets and flame jets,” Experimental Thermal and Fluid Science, 4, No. 1, 1991, pp. 115-126.
  25. C. E. Baukal, Jr. and B. Gebhart, “A review of empirical flame impingement heat transfer correlations,” International Journal of Heat and Fluid Flow, 17, No. 4, 1996, pp. 386-396.
  26. D. Bradley and G. A. Entwistle, “Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450°C,” British Journal of Applied Physics, 12, No. 12, 1961, pp. 708-711.
  27. C. M. Cade, “The thermal emissivity of some materials used in thermionic valve manufacture,” IRE Transactions on Electron Devices, 8, No. 1, 1961, pp. 56-69.
  28. R. W. Powell and R. P. Tye, “The promise of platinum as a high temperature thermal conductivity reference material,” British Journal of Applied Physics, 14, No. 10, 1963, p. 662.
  29. C. Davisson and J. R. Weeks, “The Relation between the Total Thermal Emissive Power of a Metal and its Electrical Resistivity,” Journal of the Optical Society of America, 8, No. 5, 1924, pp. 581-605.
  30. D. Pampaloni, D. Bertini, S. Puggelli, L. Mazzei, and A. Andreini, “Methane swirl-stabilized lean burn flames: assessment of scale-resolving simulations,” Energy Procedia, 126, 2017, pp.  834-841.